Files
NoteNextra-origin/content/Math4121/Math4121_L32.md
2025-07-06 12:40:25 -05:00

100 lines
3.0 KiB
Markdown

# Math4121 Lecture 32
## Chapter 6: The Lebesgue Integral
### Measurable Functions
Definition: A function $f:\mathbb{R}\to\mathbb{R}$ is measurable on the interval $[a,b]$ if $\{x\in [a,b]:f(x) > c\}$ is measurable for all $c\in\mathbb{R}$, called the **super level set** of $f$.
Denote $\{f> c\}$
#### Proposition 6.1
The following are equivalent:
For all $c\in\mathbb{R}$,
1. $\{x\in [a,b]:f(x) > c\}$ is measurable.
2. $\{x\in [a,b]:f(x) < c\}$ is measurable.
3. $\{x\in [a,b]:f(x) \geq c\}$ is measurable.
4. $\{x\in [a,b]:f(x) \leq c\}$ is measurable.
5. $\{x\in \mathbb{R}:c \leq f(x) < d\}$ is measurable for all $c,d\in\mathbb{R}$.
Proof:
Since the complement of a measurable set is measurable. (1) $\iff$ (4). and (2) $\iff$ (3).
We only need to show (1) $\implies$ (2).
Since $\{f>c\}=\bigcup_{n=1}^{\infty}\{f\geq c+\frac{1}{n}\}$.
So (1) $\implies$ (2).
Since (2) $\implies$ (1)-(4) $\implies$ (5).
To see (5) $\implies$ (1), we have $\{f\geq c\}=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}:c \leq f(x) < c+n\}$
QED
#### Proposition 6.3
Let $f,g$ be measurable on $[a,b]$ and $\alpha\in\mathbb{R}$. Then the following are measurable:
1. $f+g$
2. $fg$
3. $\alpha f$
4. $|f|^\alpha$
Proof:
If $\alpha=0$, then $\alpha f$ and $|f|^\alpha$ are constant functions, hence measurable.
But for constant functions $h$, $\{h>c\}=\begin{cases}
\emptyset & \text{if } c\geq h \\
\mathbb{R} & \text{if } c < h
\end{cases}$
For $a\neq 0$, $\{x\in \mathbb{R}:\alpha f(x) > c\}=\{x\in \mathbb{R}:f(x) > \frac{c}{\alpha}\}$
Similarly, $\{x\in \mathbb{R}:|f(x)|^\alpha > c\}=\{x\in \mathbb{R}:|f(x)| > c^{1/\alpha}\}=\{x\in \mathbb{R}:f(x) > c^{1/\alpha}\}\cup\{x\in \mathbb{R}:f(x) < -c^{1/\alpha}\}$
We want to show $\{f+g>c\}=\bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
$\{f+g>c\}\supseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
if $x$ is in the RHS, then $\exists q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$, therefore $f(x)+g(x) > c$.
So $x$ is in the LHS.
$\{f+g>c\}\subseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
Let $x\in \mathbb{R}$ such that $f(x)+g(x) > c$. Need to find $q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$.
Since $f(x)>c-g(x)$, by the density of $\mathbb{Q}$ in $\mathbb{R}$, $\exists q\in \mathbb{Q}$ such that $q > c-g(x)$.
For $fg$, we have $fg=\frac{1}{4}((f+g)^2-(f-g)^2)$
So $fg$ is measurable.
QED
### Limit of Measurable Functions
#### Proposition 6.4
Let $\{f_n\}$ be a sequence of measurable functions on $[a,b]$. Then,
$$
g(x)=\sup_{n\geq 1}f_n(x),\inf_{n\geq 1}f_n(x),\limsup_{n\to\infty}f_n(x),\liminf_{n\to\infty}f_n(x)
$$
are all measurable functions
#### Corollary of Proposition 6.4
If $\{f_n\}_{n=1}^{\infty}$ are measurable functions and $f(x)=\lim_{n\to\infty}f_n(x)$ exists for all $x\in[a,b]$, then $f$ is measurable. (pointwise limit of measurable functions is measurable)
#### Definition of almost everywhere
A property holds **almost everywhere** if it holds everywhere except for a set of measure zero.