Files
NoteNextra-origin/content/Math4121/Math4121_L4.md
2025-07-06 12:40:25 -05:00

140 lines
3.1 KiB
Markdown

# Math4121 Lecture 4
## Chapter 5. Differentiation
### The continuity of the derivative
#### Theorem 5.12
Suppose $f$ is differentiable on $[a,b]$, Then $f'$ attains intermediate values between $f'(a)$ and $f'(b)$.
Proof:
Let $\lambda\in (f'(a),f'(b))$. We need to show that there exists $x\in (a,b)$ such that $f'(x)=\lambda$.
Let $g(x)=f(x)-\lambda x$. Then $g$ is differentiable on $(a,b)$ and
$$
g'(x)=f'(x)-\lambda.
$$
So $g'(a)=f'(a)-\lambda<0$ and $g'(b)=f'(b)-\lambda>0$.
We need to show that $g'(x)=0$ for some $x\in (a,b)$.
Since $g'(a)<0$, $\exists t_1\in (a,b)$ such that $g'(t_1)<g(a)$.
If not, then $g(t)\geq g(a)$ for all $t\in (a,b)$. But then $g'(a)\gets \frac{g(t)-g(a)}{t-a}\geq 0$, which contradicts $g'(a)<0$.
With the loss of generality, since $g'(b)>0$, $\exists t_2\in (a,b)$ such that $g'(t_2)<g(b)$.
Hence, $g$ attains its infimum on $[a,b]$ at some $x\in (a,b)$. Then this $x$ is a local minimum of $g$ on $(a,b)$.
So $g'(x)=0$ and $f'(x)=\lambda$.
QED
### L'Hôpital's Rule
#### Theorem 5.13
Suppose $f$ and $g$ are differentiable on $(a,b)$ and $g'(x)\neq 0$ for all $x\in (a,b)$, where $-\infty\leq a<b\leq \infty$. Suppose
$$
\frac{f'(x)}{g'(x)}\to A \text{ as } x\to a\dots
$$
If
$$
f(x)\to 0 \text{ and } g(x)\to 0 \text{ as } x\to a,
$$
or
$$
g(x)\to \infty \text{ as } x\to a,
$$
then
$$
\frac{f(x)}{g(x)}\to A \text{ as } x\to a.
$$
Note that all these numbers $A$ can be $\infty$ or $-\infty$ (on extended real line).
We're using the open neighborhood definition of $\to$ here. An open neighborhood of $\infty$ is an interval of the form $(c,\infty)$ for some $c\in \mathbb{R}$.
> Recall the [Definition 3.1](https://notenextra.trance-0.com/Math4111/Math4111_L13#definition-31).
Proof:
Main step:
Suppose $-\infty\leq A\leq \infty$, and let $q>A$ with neighborhood $(-,\infty,q)$. Then $\exists c\in \mathbb{R}$ such that $\frac{f(x)}{g(x)}<q,\forall x\in (a,c)$.
Proof of the main step:
Fix $A<r<q$. Then $\exists c\in (a,b)$ such that $\frac{f'(x)}{g'(x)}<r,\forall x\in (a,c)$.
Now, for any $a<x<y<c$, by generalized mean value theorem, $\exists t\in (x,y)$ such that
$$
\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f'(t)}{g'(t)}
$$
Since $t\in (a,c)$, $\frac{f'(t)}{g'(t)}<r$.
Case 1: $f(x)\to 0$ and $g(x)\to 0$ as $x\to a$.
As $x\to a$, $f(x)\to 0$ and $g(x)\to 0$. So
$$
\begin{aligned}
\lim_{x\to a}\frac{f(x)-f(y)}{g(x)-g(y)}&=\lim_{x\to a}\frac{0-f(y)}{0-g(y)}\\
&=\lim_{x\to a}\frac{f(y)}{g(y)}\\
&=\frac{f'(y)}{g'(y)}\\
&\leq r<q
\end{aligned}
$$
$\forall y\in (a,c)$, $\frac{f(y)}{g(y)}<q$.
Case 2: $g(x)\to \infty$ as $x\to a$.
We can find $c_1\in (a,y)$ such that $g(x)>g(y)$ for all $x\in (a,c_1)$.
Therefore,
$$
\begin{aligned}
\frac{f(x)-f(y)}{g(x)}&<\frac{r[g(x)-g(y)]}{g(x)}\\
\frac{f(x)}{g(x)}&<r-\frac{rg(y)}{g(x)}+\frac{f(y)}{g(x)}
\end{aligned}
$$
To make the right side less than $q$, we need
$$
\frac{|rg(y)|+|f(y)|}{|g(x)|}<q-r
$$
so,
$$
|g(x)|>\frac{|rg(y)|+|f(y)|}{q-r}
$$
There exists $c_2\in (a,c_1)$ such that $|g(x)|>\frac{|rg(y)|+|f(y)|}{q-r},\forall x\in (a,c_2)$.
So $\forall x\in (a,c_2)$,
$$
\frac{f(x)}{g(x)}<\frac{rg(y)+f(y)}{g(x)}<r+(q-r)=q
$$
$\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}<q$.
QED