3.5 KiB
Math4121 Lecture 5
Continue on differentiation
L'Hôpital's Rule
Suppose f and g are real differentiable on (a,b) and g'(x)\neq 0 for all x\in (a,b).
Suppose \frac{f'(x)}{g'(x)}\to A as x\to a,
If f(x)\to 0 and g(x)\to 0 as x\to a,
or g(x)\to \infty as x\to a,
then \frac{f(x)}{g(x)}\to A as x\to a.
Proof:
Main step: Let -\infty<a<b<\infty.for any q>A, there exists c\in (a,b) such that \frac{f(x)}{g(x)}<q for all x\in (a,c).
Topological definition of limit:
h(x)\to Aasx\to aif\forall \epsilon>0,\exists \delta>0such that|x-a|<\deltaimplies|h(x)-A|<\epsilon.In other words, if for any open neighborhood
VofA, there exists an open neighborhoodUofasuch thath(U)\subseteq V.
Case 1: A=-\infty, for any q>A, there exists \delta>0 such that x\in (a,a+\delta) implies \frac{f(x)}{g(x)}<q.
Case 2: A=\infty, we change the function F(x)=-f(x) and apply the case 1.
Case 3: A\in \mathbb{R}, Let \epsilon>0 and take q=A+\epsilon. \exists c_1\in (a,b) such that \forall x\in (a,c_1), \frac{f(x)}{g(x)}<q.
Set F(x)=-f(x). and q=-A+\epsilon>-A. Apply main step, \exists c_2\in (a,b) such that \forall x\in (a,c_2), \frac{F(x)}{g(x)}<-A+\epsilon. so \forall x\in (a,c_2), \frac{f(x)}{g(x)}>A-\epsilon.
We take c=\min(c_1,c_2). Then \forall x\in (a,c), \frac{f(x)}{g(x)}<q.
QED
Higher Order Derivatives
Definition 5.14
If f is differentiable on (a,b), then we define f'(x)=\lim_{t\to x}\frac{f(t)-f(x)}{t-x}.
If f' is differentiable on (a,b), then we define f''(x)=(f')'(x).
If f^{(k)} is differentiable on (a,b), then we define f^{(k+1)}(x)=(f^{(k)})'(x).
Theorem 5.15 Taylor's Theorem
Let f:[a,b]\to \mathbb{R}, and n be a positive integer.
Let f^{(n-1)} be continuous on [a,b], and differentiable on (a,b).
For \alpha\in [a,b], define the Taylor polynomial of order n-1 at \alpha by
P(t)=\sum_{k=0}^{n-1}\frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^k
Example:
When n=1, P(t)=f(\alpha).
When n=2, P(t)=f(\alpha)+f'(\alpha)(t-\alpha).
When n=3, P(t)=f(\alpha)+f'(\alpha)(t-\alpha)+\frac{f''(\alpha)}{2}(t-\alpha)^2.
Key property:
P^{(k)}(\alpha)=f^{(k)}(\alpha)\quad \forall k=0,1,\cdots,n-1
For each \beta\in [a,b], there exists x between \alpha and \beta such that
f(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\alpha-\beta)^n
On rudin, it is
f(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^n
Proof:
Let M=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^n}.
So that f(\beta)=P(\beta)+M(\beta-\alpha)^n.
Need to show that n!M=f^{(n)}(x). for some x\in (\alpha,\beta). Defined g(t)=f(t)-P(t)-M(t-\alpha)^n.
By our choice of M, g(\alpha)=g(\beta)=0.
g(t)=f(t)-P(t)-M(n(n-1)(n-2)\cdots(n-k+1)(t-\alpha)^{n-k})
for k=1,2,\cdots,n-1. And when k=n, g^{(n)}(t)=f^{(n)}(t)-0-M(n!).
Need to show that \exists x\in (\alpha,\beta) such that g^{(n)}(x)=0.
By Mean Value Theorem, \exists x_1\in (\alpha,\beta) such that g'(x_1)=0.
By Mean Value Theorem, \exists x_2\in (\alpha,x_1) such that g''(x_2)=0.
By Mean Value Theorem, \exists x_3\in (\alpha,x_2) such that g^{(3)}(x_3)=0.
\cdots
By Mean Value Theorem, \exists x_n\in (\alpha,x_{n-1}) such that g^{(n)}(x_n)=0.
Since g^{(n)}(\alpha)=0 for k=0,1,2,\cdots,n-1, we can find x_n\in (\alpha,x_{n-1}) such that g^{(n)}(x_n)=0.
QED