Files
NoteNextra-origin/content/Math4121/Math4121_L6.md
2025-07-06 12:40:25 -05:00

3.5 KiB

Math4121 Lecture 6

Chapter 6: Riemann-Stieltjes Integral

A nice point to restart your learning, LOL.

Differentiation and existence of the integral

Definition 6.1

Let [a,b]\subseteq \mathbb{R}. A partition of [a,b] is a finite sequence of points \{x_0,x_1,\cdots,x_n\}\subseteq [a,b] such that x_0<x_1<\cdots<x_n.

Let \alpha:[a,b]\to \mathbb{R} be monotone increasing. (\alpha(x)\leq \alpha(y) for x\leq y)

We will use \alpha for monotone increasing function in later sections.

Definition 6.2

For a partition P of [a,b], we define \Delta \alpha_i=\alpha(x_i)-\alpha(x_{i-1}) for i=1,2,\cdots,n.

Let f:[a,b]\to \mathbb{R} be bounded.

Then we define


m_i=\inf_{x\in [x_{i-1},x_i]}f(x),\quad M_i=\sup_{x\in [x_{i-1},x_i]}f(x).

Defined the lower and upper Riemann sum by


L(P,f,\alpha)=\sum_{i=1}^n m_i\Delta \alpha_i,\quad U(P,f,\alpha)=\sum_{i=1}^n M_i\Delta \alpha_i.

Defined the lower and upper integral by


\underline{\int_a^b}f(x)d\alpha=\sup_P L(P,f,\alpha),\quad \overline{\int_a^b}f(x)d\alpha=\inf_P U(P,f,\alpha).

If \underline{\int_a^b}f(x)d\alpha=\overline{\int_a^b}f(x)d\alpha, then we say f is Riemann-Stieltjes integrable with respect to \alpha on [a,b], written as f\in \mathscr{R}(\alpha), and the common value is called the Riemann-Stieltjes integral of f with respect to \alpha on [a,b], denoted by


\int_a^b f(x)d\alpha=\underline{\int_a^b}f(x)d\alpha=\overline{\int_a^b}f(x)d\alpha.

If \alpha(x)=x, then we write \int_a^b f(x)dx instead of \int_a^b f(x)d\alpha.

Damn, that's a really loooong definition.

Definition 6.3

A partition P^* is called a refinement of P if P\subseteq P^*.

Given two partitions P_1 and P_2, we define their common refinement P^*=P_1\cup P_2. we can merge two partitions by adding all points in both partitions.

Theorem 6.4

If P^* is a refinement of P, then


L(P^*,f,\alpha)\geq L(P,f,\alpha)

Refinement of a partition will never make the lower sum smaller.


U(P^*,f,\alpha)\leq U(P,f,\alpha)

Refinement of a partition will never make the upper sum larger.

Proof:

Main idea:

Let P=P_0\subset P_1\subset P_2\subset \cdots \subset P_K=P^*.

Where P_k has more points than P_{k-1}.

It suffices to show that L(P_k,f,\alpha)\geq L(P_{k-1},f,\alpha) for all k=1,2,\cdots,K.

Let P_{k-1}=\{y_0,y_1,\cdots,y_J\} and P_k=\{y_0,y_1,\cdots,y_{j-1},y^*,y_j,\cdots,y_J\}.

Then, since \alpha is monotone increasing, we have y_{j-1}\leq y^*\leq y_j.


\begin{aligned}
L(P_k,f,\alpha)-L(P_{k-1},f,\alpha)&=\sum_{i=1}^{j+1}\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))-\sum_{i=1}^j\inf_{x\in [y_{i-1},y_i]}f(x)(\alpha(y_i)-\alpha(y_{i-1}))\\
&=\inf_{x\in [y^*,y_j]}f(x)(\alpha(y_j)-\alpha(y^*))+\inf_{x\in [y_{j-1},y^*]}f(x)(\alpha(y^*)-\alpha(y_{j-1}))-\inf_{x\in [y_{j-1},y_j]}f(x)(\alpha(y_j)-\alpha(y_{j-1}))\\
&\geq m_j(\alpha(y_j)-\alpha(y^*))+m_j(\alpha(y^*)-\alpha(y_{j-1}))-m_{j-1}(\alpha(y_j)-\alpha(y_{j-1}))\\
&=0
\end{aligned}

Same for U(P_k,f,\alpha)\geq U(P_{k-1},f,\alpha).

QED

Theorem 6.5


\underline{\int_a^b}f(x)d\alpha\leq \overline{\int_a^b}f(x)d\alpha

Proof:

Let P^* be a common refinement of P_1 and P_2.

By Theorem 6.4, we have


L(P_1,f,\alpha)\leq L(P^*,f,\alpha)\leq U(P^*,f,\alpha)\leq U(P_2,f,\alpha)

Fixing P_1 and take the supremum over all P_2, we have


\underline{\int_a^b}f(x)d\alpha\leq \sup_{P_1}L(P_1,f,\alpha)\leq \inf_{P_2}U(P_2,f,\alpha)=\overline{\int_a^b}f(x)d\alpha

QED