3.7 KiB
Math4121 Lecture 7
Continue on Chapter 6
Riemann integrable
Theorem 6.6
A function f is Riemann integrable with respect to \alpha on [a, b] if and only if for every \epsilon > 0, there exists a partition P of [a, b] such that U(f, P, \alpha) - L(f, P, \alpha) < \epsilon.
Proof:
\impliedby
For every P,
L(f, P, \alpha) \leq \underline{\int}_a^b f d\alpha \leq \overline{\int}_a^b f d\alpha \leq U(f, P, \alpha)
So if f is Riemann integrable with respect to \alpha on [a, b], then for every \epsilon > 0, there exists a partition P such that
0 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha \leq U(f, P, \alpha) - L(f, P, \alpha) < \epsilon
Thus 0 \leq \overline{\int}_a^b f d\alpha - \underline{\int}_a^b f d\alpha < \epsilon,\forall \epsilon > 0.
Then, \overline{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha.
So, f is Riemann integrable with respect to \alpha on [a, b].
\implies
If f\in \mathscr{R}(\alpha) on [a, b], then f is Riemann integrable with respect to \alpha on [a, b].
Then by the definition of Riemann integrable, \sup_{P} L(f, P, \alpha) =\int^b_a f d\alpha = \inf_{P} U(f, P, \alpha).
Given any \epsilon > 0, by definition of infimum and supremum, there exists a partition P_1,P_2 such that
\int^b_a f d\alpha - \frac{\epsilon}{2} < L(f, P_1, \alpha) \leq \sup_{P} L(f, P, \alpha) = \inf_{P} U(f, P, \alpha) < \int^b_a f d\alpha + \frac{\epsilon}{2}
Taking P = P_1 \cup P_2, by Theorem 6.4 we have
U(f, P, \alpha) - L(f, P, \alpha) \leq \left( \int^b_a f d\alpha + \frac{\epsilon}{2} \right) - \left( \int^b_a f d\alpha - \frac{\epsilon}{2} \right) = \epsilon
So f is Riemann integrable with respect to \alpha on [a, b].
QED
Theorem 6.8
If f is continuous on [a, b], then f is Riemann integrable with respect to \alpha on [a, b].
Proof:
Main idea:
U(f, P, \alpha) - L(f, P, \alpha) = \sum_{i=1}^n \left( M_i - m_i \right) \Delta \alpha_iIf we can make
M_i - m_ismall enough, thenU(f, P, \alpha) - L(f, P, \alpha)can be made arbitrarily small.Since
M_i=\sup_{x\in [t_{i-1}, t_i]} f(x)andm_i=\inf_{x\in [t_{i-1}, t_i]} f(x), we can makeM_i - m_ismall enough by making the partitionPsufficiently fine.
Suppose we can find a partition P such that M_i - m_i < \eta. Then U(f, P, \alpha) - L(f, P, \alpha) \leq\eta\sum_{i=1}^n \Delta \alpha_i = \eta (\alpha(b)-\alpha(a)).
Let
\epsilon >0and choose\eta = \frac{\epsilon}{\alpha(b)-\alpha(a)}. Then there exists a partitionPsuch thatU(f, P, \alpha) - L(f, P, \alpha) < \epsilon.
Since f is continuous on [a, b] (a compact set), then f is uniformly continuous on [a, b]. Theorem 4.19
If
fis continuous onx, then\forall \epsilon > 0,\exists \delta > 0such that|x-y| < \delta \implies |f(x)-f(y)| < \epsilon.If
fis continuous on[a, b], thenfis continuous atx,\forall x\in [a, b].
So, there exists a \delta > 0 such that for all x, t\in [a, b] with |x-t| < \delta, we have |f(x)-f(t)| < \eta.
Let P=\{x_0, x_1, \cdots, x_n\} be a partition of [a, b] such that \Delta x_i < \delta for all i.
So, \sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| < \eta for all i.
\begin{aligned}
\sup_{x,t\in [x_{i-1}, x_i]} |f(x)-f(t)| &= \sup_{x,t\in [x_{i-1}, x_i]} f(x)-f(t) \\
&= \sup_{x\in [x_{i-1}, x_i]} f(x)-\sup_{t\in [x_{i-1}, x_i]} -f(t) \\
&=\sup_{x\in [x_{i-1}, x_i]} f(x)-\inf_{t\in [x_{i-1}, x_i]} f(t) \\
&= M_i - m_i
\end{aligned}
So, f is Riemann integrable with respect to \alpha on [a, b].
QED