20 KiB
Math 416 Midterm 1 Review
So everything we have learned so far is to extend the real line to the complex plane.
Chapter 0 Calculus on Real values
Differentiation
Let f,g be function on real line and c be a real number.
\frac{d}{dx}(f+g)=f'+g'
\frac{d}{dx}(cf)=cf'
\frac{d}{dx}(fg)=f'g+fg'
\frac{d}{dx}(f/g)=(f'g-fg')/g^2
\frac{d}{dx}(f\circ g)=(f'\circ g)\frac{d}{dx}g
\frac{d}{dx}x^n=nx^{n-1}
\frac{d}{dx}e^x=e^x
\frac{d}{dx}\ln x=\frac{1}{x}
\frac{d}{dx}\sin x=\cos x
\frac{d}{dx}\cos x=-\sin x
\frac{d}{dx}\tan x=\sec^2 x
\frac{d}{dx}\sec x=\sec x\tan x
\frac{d}{dx}\csc x=-\csc x\cot x
\frac{d}{dx}\sinh x=\cosh x
\frac{d}{dx}\cosh x=\sinh x
\frac{d}{dx}\tanh x=\operatorname{sech}^2 x
\frac{d}{dx}\operatorname{sech} x=-\operatorname{sech}x\tanh x
\frac{d}{dx}\operatorname{csch} x=-\operatorname{csch}x\coth x
\frac{d}{dx}\coth x=-\operatorname{csch}^2 x
\frac{d}{dx}\arcsin x=\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\arccos x=-\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\arctan x=\frac{1}{1+x^2}
\frac{d}{dx}\operatorname{arccot} x=-\frac{1}{1+x^2}
\frac{d}{dx}\operatorname{arcsec} x=\frac{1}{x\sqrt{x^2-1}}
\frac{d}{dx}\operatorname{arccsc} x=-\frac{1}{x\sqrt{x^2-1}}
Integration
Let f,g be function on real line and c be a real number.
\int (f+g)dx=\int fdx+\int gdx
\int cfdx=c\int fdx
\int e^x dx=e^x
\int \ln x dx=x\ln x-x
\int \frac{1}{x} dx=\ln|x|
\int \sin x dx=-\cos x
\int \cos x dx=\sin x
\int \tan x dx=-\ln|\cos x|
\int \cot x dx=\ln|\sin x|
\int \sec x dx=\ln|\sec x+\tan x|
\int \csc x dx=\ln|\csc x-\cot x|
\int \sinh x dx=\cosh x
\int \cosh x dx=\sinh x
\int \tanh x dx=\ln|\cosh x|
\int \coth x dx=\ln|\sinh x|
\int \operatorname{sech} x dx=2\arctan(\tanh(x/2))
\int \operatorname{csch} x dx=\ln|\coth x-\operatorname{csch} x|
\int \operatorname{sech}^2 x dx=\tanh x
\int \operatorname{csch}^2 x dx=-\coth x
\int \frac{1}{1+x^2} dx=\arctan x
\int \frac{1}{x^2+1} dx=\arctan x
\int \frac{1}{x^2-1} dx=\frac{1}{2}\ln|\frac{x-1}{x+1}|
\int \frac{1}{x^2-a^2} dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|
\int \frac{1}{x^2+a^2} dx=\frac{1}{a}\arctan(\frac{x}{a})
\int \frac{1}{\sqrt{x^2-a^2}} dx=\ln|x+\sqrt{x^2-a^2}|
\int \frac{1}{\sqrt{x^2+a^2}} dx=\ln|x+\sqrt{x^2+a^2}|
Chapter 1 Complex Numbers
Definition of complex numbers
An ordered pair of real numbers (x, y) can be represented as a complex number z = x + yi, where i is the imaginary unit.
With operations defined as:
(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i
(x_1 + y_1i) \cdot (x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i
Modulus
The modulus of a complex number z = x + yi is defined as
|z| = \sqrt{x^2 + y^2}=|z\overline{z}|
De Moivre's Formula
Every complex number z can be written as z = r(\cos \theta + i \sin \theta), where r is the magnitude of z and \theta is the argument of z.
z^n = r^n(\cos n\theta + i \sin n\theta)
The De Moivre's formula is useful for finding the $n$th roots of a complex number.
z^n = r^n(\cos n\theta + i \sin n\theta)
Roots of complex numbers
Using De Moivre's formula, we can find the $n$th roots of a complex number.
If z=r(\cos \theta + i \sin \theta), then the $n$th roots of z are given by:
z_k = r^{1/n}(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n})
for k = 0, 1, 2, \ldots, n-1.
Stereographic projection
The stereographic projection is a map from the unit sphere S^2 to the complex plane \mathbb{C}\setminus\{0\}.
The projection is given by:
z\mapsto \frac{(2Re(z), 2Im(z), |z|^2-1)}{|z|^2+1}
The inverse map is given by:
(\xi,\eta, \zeta)\mapsto \frac{\xi + i\eta}{1 - \zeta}
Chapter 2 Complex Differentiation
Definition of complex differentiation
Let the complex plane \mathbb{C} be defined in an open subset G of \mathbb{C}. (Domain)
Then f is said to be differentiable at z_0\in G if the limit
\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}
exists.
The limit is called the derivative of f at z_0 and is denoted by f'(z_0).
To prove that a function is differentiable, we can use the standard delta-epsilon definition of a limit.
\left|\frac{f(z)-f(z_0)}{z-z_0} - f'(z_0)\right| < \epsilon
whenever 0 < |z-z_0| < \delta.
With such definition, all the properties of real differentiation can be extended to complex differentiation.
Differentiation of complex functions
- If
fis differentiable atz_0, thenfis continuous atz_0. - If
f,gare differentiable atz_0, thenf+g, fgare differentiable atz_0.(f+g)'(z_0) = f'(z_0) + g'(z_0)(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0) - If
f,gare differentiable atz_0andg(z_0)\neq 0, thenf/gis differentiable atz_0.\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g(z_0)^2} - If
fis differentiable atz_0andgis differentiable atf(z_0), theng\circ fis differentiable atz_0.(g\circ f)'(z_0) = g'(f(z_0))f'(z_0) - If
f(z)=\sum_{k=0}^n c_k(z-z_0)^k, wherec_k\in\mathbb{C}, thenfis differentiable atz_0andf'(z_0)=\sum_{k=1}^n kc_k(z_0-z_0)^{k-1}.f'(z_0) = c_1 + 2c_2(z_0-z_0) + 3c_3(z_0-z_0)^2 + \cdots + nc_n(z_0-z_0)^{n-1}
Cauchy-Riemann Equations
Let the function defined on an open subset G of \mathbb{C} be f(x,y)=u(x,y)+iv(x,y), where u,v are real-valued functions.
Then f is differentiable at z_0=x_0+y_0i if and only if the partial derivatives of u and v exist at (x_0,y_0) and satisfy the Cauchy-Riemann equations:
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
On the polar form, the Cauchy-Riemann equations are
r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}
Holomorphic functions
A function f is said to be holomorphic on an open subset G of \mathbb{C} if f is differentiable at every point of G.
Partial differential operators
\frac{\partial}{\partial z} = \frac{1}{2}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)
\frac{\partial}{\partial \bar{z}} = \frac{1}{2}\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)
This gives that
\frac{\partial f}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\right)=\frac{1}{2}\left(\frac{\partial u}{\partial x} +\frac{\partial v}{\partial y}\right) + \frac{i}{2}\left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)
\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right)=\frac{1}{2}\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) + \frac{i}{2}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)
If the function f is holomorphic, then by the Cauchy-Riemann equations, we have
\frac{\partial f}{\partial \bar{z}} = 0
Conformal mappings
A holomorphic function f is said to be conformal if it preserves the angles between the curves. More formally, if f is holomorphic on an open subset G of \mathbb{C} and z_0\in G, \gamma_1, \gamma_2 are two curves passing through z_0 (\gamma_1(t_1)=\gamma_2(t_2)=z_0) and intersecting at an angle \theta, then
\arg(f\circ\gamma_1)'(t_1) - \arg(f\circ\gamma_2)'(t_2) = \theta
In other words, the angle between the curves is preserved.
An immediate consequence is that
\arg(f\cdot \gamma_1)'(t_1) =\arg f'(z_0) + \arg \gamma_1'(t_1)\\
\arg(f\cdot \gamma_2)'(t_2) =\arg f'(z_0) + \arg \gamma_2'(t_2)
Harmonic functions
A real-valued function u is said to be harmonic if it satisfies the Laplace equation:
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0
Chapter 3 Linear Fractional Transformations
Definition of linear fractional transformations
A linear fractional transformation is a function of the form
\phi(z) = \frac{az+b}{cz+d}
where a,b,c,d are complex numbers and ad-bc\neq 0.
Properties of linear fractional transformations
Matrix form
A linear fractional transformation can be written as a matrix multiplication:
\phi(z) = \begin{bmatrix}
a & b\\
c & d\\
\end{bmatrix}
\begin{bmatrix}
z\\
1\\
\end{bmatrix}
Conformality
A linear fractional transformation is conformal.
\phi'(z) = \frac{ad-bc}{(cz+d)^2}
Three-fold transitivity
If z_1,z_2,z_3 are distinct points in the complex plane, then there exists a unique linear fractional transformation \phi such that \phi(z_1)=\infty, \phi(z_2)=0, \phi(z_3)=1.
The map is given by
\phi(z) =\begin{cases}
\frac{(z-z_2)(z_1-z_3)}{(z-z_1)(z_2-z_3)} & \text{if } z_1,z_2,z_3 \text{ are all finite}\\
\frac{z-z_2}{z_3-z_2} & \text{if } z_1=\infty\\
\frac{z_3-z_1}{z-z_1} & \text{if } z_2=\infty\\
\frac{z-z_2}{z-z_1} & \text{if } z_3=\infty\\
\end{cases}
So if z_1,z_2,z_3, w_1,w_2,w_3 are distinct points in the complex plane, then there exists a unique linear fractional transformation \phi such that \phi(z_i)=w_i for i=1,2,3.
Factorization
Every linear fractional transformation can be written as a composition of homothetic mappings, translations, inversions, and multiplications.
If \phi(z)=\frac{az+b}{cz+d}, then
\phi(z) = \frac{b-ad/c}{cz+d}+\frac{a}{c}
Clircle
A linear-fractional transformation maps circles and lines to circles and lines.
Chapter 4 Elementary Functions
Exponential function
The exponential function is defined as
e^z = \sum_{n=0}^\infty \frac{z^n}{n!}
Let z=x+iy, then
\begin{aligned}
e^z &= e^{x+iy}\\
&= e^x e^{iy}\\
&= e^x\sum_{n=0}^\infty \frac{(iy)^n}{n!}\\
&= e^x\sum_{n=0}^\infty \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^\infty \frac{(-1)^n y^{2n+1}}{(2n+1)!}\\
&= e^x(\cos y + i\sin y)\\
\end{aligned}
So we can rewrite the polar form of a complex number as
z = r(\cos \theta + i\sin \theta) = re^{i\theta}
e^x is holomorphic
Let f(z)=e^z, then u(x,y)=e^x\cos y, v(x,y)=e^x\sin y.
\frac{\partial u}{\partial x} = e^x\cos y = \frac{\partial v}{\partial y}\\
\frac{\partial u}{\partial y} = -e^x\sin y = -\frac{\partial v}{\partial x}
Trigonometric functions
\sin z = \frac{e^{iz}-e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz}+e^{-iz}}{2}, \quad \tan z = \frac{\sin z}{\cos z}
\sec z = \frac{1}{\cos z}, \quad \csc z = \frac{1}{\sin z}, \quad \cot z = \frac{1}{\tan z}
Hyperbolic functions
\sinh z = \frac{e^z-e^{-z}}{2}, \quad \cosh z = \frac{e^z+e^{-z}}{2}, \quad \tanh z = \frac{\sinh z}{\cosh z}
\operatorname{sech} z = \frac{1}{\cosh z}, \quad \operatorname{csch} z = \frac{1}{\sinh z}, \quad \operatorname{coth} z = \frac{1}{\tanh z}
Logarithmic function
The logarithmic function is defined as
\ln z=\{w\in\mathbb{C}: e^w=z\}
Properties of the logarithmic function
Let z=x+iy, then
|e^z|=\sqrt{e^x(\cos y)^2+(\sin y)^2}=e^x
So we have
\log z = \ln |z| + i\arg z
Power function
For any two complex numbers a,b, we can define the power function as
a^b = e^{b\log a}
Example:
i^i=e^{i\ln i}=e^{i(\ln 1+i\frac{\pi}{2})}=e^{-\frac{\pi}{2}}e^{i\pi}=-1
Chapter 5 Power Series
Definition of power series
A power series is a series of the form
\sum_{n=0}^\infty a_n (z-z_0)^n
Properties of power series
Geometric series
\sum_{n=0}^\infty z^n = \frac{1}{1-z}, \quad |z|<1
Radius/Region of convergence
The radius of convergence of a power series is the largest number R such that the series converges for all z with |z-z_0|<R.
The region of convergence of a power series is the set of all points z such that the series converges.
Cauchy-Hadamard Theorem
The radius of convergence of a power series is given by
R=\frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}
Derivative of power series
The derivative of a power series is given by
f'(z)=\sum_{n=1}^\infty n a_n (z-z_0)^{n-1}
Cauchy Product (of power series)
Let \sum_{n=0}^\infty a_n (z-z_0)^n and \sum_{n=0}^\infty b_n (z-z_0)^n be two power series with radius of convergence R_1 and R_2 respectively.
Then the Cauchy product of the two series is given by
\sum_{n=0}^\infty c_n (z-z_0)^n
where
c_n = \sum_{k=0}^n a_k b_{n-k}
The radius of convergence of the Cauchy product is at least \min(R_1,R_2).
Chapter 6 Complex Integration
Definition of Riemann Integral for complex functions
The complex integral of a complex function \phi on the closed subinterval [a,b] of the real line is said to be piecewise continuous if there exists a partition a=t_0<t_1<\cdots<t_n=b such that \phi is continuous on each open interval (t_{i-1},t_i) and has a finite limit at each discontinuity point of the closed interval [a,b].
If \phi is piecewise continuous on [a,b], then the complex integral of \phi on [a,b] is defined as
\int_a^b \phi(t) dt = \int_a^b \operatorname{Re}\phi(t) dt + i\int_a^b \operatorname{Im}\phi(t) dt
Fundamental Theorem of Calculus
If \phi is piecewise continuous on [a,b], then
\int_a^b \phi'(t) dt = \phi(b)-\phi(a)
Triangle inequality
\left|\int_a^b \phi(t) dt\right| \leq \int_a^b |\phi(t)| dt
Integral on curve
Let \gamma be a piecewise smooth curve in the complex plane.
The integral of a complex function f on \gamma is defined as
\int_\gamma f(z) dz = \int_a^b f(\gamma(t))\gamma'(t) dt
Favorite estimate
Let \gamma:[a,b]\to\mathbb{C} be a piecewise smooth curve, and let f:[a,b]\to\mathbb{C} be a continuous complex-valued function. Let M be a real number such that |f(z)|\leq M for all z\in\gamma. Then
\left|\int_\gamma f(z) dz\right| \leq M\ell(\gamma)
where \ell(\gamma) is the length of the curve \gamma.
Chapter 7 Cauchy's Theorem
Cauchy's Theorem
Let \gamma be a closed curve in \mathbb{C} and U be a simply connected open subset of \mathbb{C} containing \gamma and its interior. Let f be a holomorphic function on U. Then
\int_\gamma f(z) dz = 0
Cauchy's Formula for a Circle
Let C be a counterclockwise oriented circle and let f be holomorphic function defined in an open set containing C and its interior. Then for any z in the interior of C,
f(z)=\frac{1}{2\pi i}\int_C \frac{f(\zeta)}{\zeta-z} d\zeta
Mean Value Property
Let the function f be holomorphic on a disk |z-z_0|<R. Then for any 0<r<R, let C_r denote the circle with center z_0 and radius r. Then
f(z_0)=\frac{1}{2\pi}\int_0^{2\pi} f(z_0+re^{i\theta}) d\theta
The value of the function at the center of the disk is the average of the values of the function on the boundary of the disk.
Cauchy Integrals
Let \gamma be a piecewise smooth curve in \mathbb{C} and let \phi be a continuous complex-valued function on \gamma. Then the Cauchy integral of \phi on \gamma is the function f defined in C\setminus\gamma by
f(z)=\int_\gamma \frac{\phi(\zeta)}{\zeta-z} d\zeta
Cauchy Integral Formula for circle C_r:
f(z)=\frac{1}{2\pi i}\int_{C_r} \frac{f(\zeta)}{\zeta-z} d\zeta
Example:
Evaluate
\int_{|z|=2} \frac{z}{z-1} dzNote that if we let
f(\zeta)=\zetaandz=1is inside the circle, then we can use Cauchy Integral Formula for circleC_rto evaluate the integral.So we have
\int_{|z|=2} \frac{z}{z-1} dz = 2\pi i f(1) = 2\pi i
General Cauchy Integral Formula for circle C_r:
f^{(n)}(z)=\frac{n!}{2\pi i}\int_{C_r} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta
Example:
Evaluate
\int_{C}\frac{\sin z}{z^{38}}dzNote that if we let
f(\zeta)=\sin \zetaandz=0is inside the circle, then we can use General Cauchy Integral Formula for circleC_rto evaluate the integral.So we have
\int_{C}\frac{\sin z}{z^{38}}dz = \frac{2\pi i}{37!} f^{(37)}(0) = \frac{2\pi i}{37!} \sin ^{(37)}(0)Note that $\sin ^{(n)}(0)=\begin{cases} 0,& n\equiv 0 \pmod{4}\ 1,& n\equiv 1 \pmod{4}\ 0,& n\equiv 2 \pmod{4}\ -1,& n\equiv 3 \pmod{4} \end{cases}$
So we have
\int_{C}\frac{\sin z}{z^{38}}dz = \frac{2\pi i}{37!} \sin ^{(37)}(0) = \frac{2\pi i}{37!} \cdot 1 = \frac{2\pi i}{37!}
Cauchy integral is a easier way to evaluate the integral.
Liouville's Theorem
If a function f is entire (holomorphic on \mathbb{C}) and bounded, then f is constant.
Finding power series of holomorphic functions
If f is holomorphic on a disk |z-z_0|<R, then f can be represented as a power series on the disk.
where a_n=\frac{f^{(n)}(z_0)}{n!}
Example:
If
q(z)=(z-1)(z-2)(z-3), find the power series ofq(z)centered atz=0.Note that
q(z)is holomorphic on\mathbb{C}andq(z)=0atz=1,2,3.So we can use the power series of
q(z)centered atz=1.To solve this, we can simply expand
q(z)=(z-1)(z-2)(z-3)and getq(z)=z^3-6z^2+11z-6.So we have
a_0=q(1)=-6,a_1=q'(1)=3z^2-12z+11=11,a_2=\frac{q''(1)}{2!}=\frac{6z-12}{2}=-3,a_3=\frac{q'''(1)}{3!}=\frac{6}{6}=1.So the power series of
q(z)centered atz=1isq(z)=-6+11(z-1)-3(z-1)^2+(z-1)^3
Fundamental Theorem of Algebra
Every non-constant polynomial with complex coefficients has a root in \mathbb{C}.
Can be factored into linear factors:
p(z)=a_n(z-z_1)(z-z_2)\cdots(z-z_n)
We can treat holomorphic functions as polynomials.
f has zero of order m at z_0 if and only if f(z)=(z-z_0)^m g(z) for some holomorphic g(z) and g(z_0)\neq 0.
Zeros of holomorphic functions
If f is holomorphic on a disk |z-z_0|<R and f has a zero of order m at z_0, then f(z_0)=0, f'(z_0)=0, f''(z_0)=0, \cdots, f^{(m-1)}(z_0)=0 and f^{(m)}(z_0)\neq 0.
And there exists a holomorphic function g on the disk such that f(z)=(z-z_0)^m g(z) and g(z_0)\neq 0.
Example:
Find zeros of
f(z)=\cos(z\frac{\pi}{2})Note that
f(z)=0if and only ifz\frac{\pi}{2}=(2k+1)\frac{\pi}{2}for some integerk.So the zeros of
f(z)arez=(2k+1)for some integerk.The order of the zero is
1sincef'(z)=-\frac{\pi}{2}\sin(z\frac{\pi}{2})andf'(z)\neq 0for allz=(2k+1).
If f vanishes to infinite order at z_0 (that is, f(z_0)=f'(z_0)=f''(z_0)=\cdots=0), then f(z)\equiv 0 on the connected open set U containing z_0.
Identity Theorem
If f and g are holomorphic on a connected open set U\subset\mathbb{C} and f(z)=g(z) for all z in a subset of U that has a limit point in U, then f(z)=g(z) for all z\in U.
Key: consider h(z)=f(z)-g(z), prove h(z)\equiv 0 on U by applying the zero of holomorphic function.
Weierstrass Theorem
Limit of a sequence of holomorphic functions is holomorphic.
Let f_n be a sequence of holomorphic functions on a domain D\subset\mathbb{C} that converges uniformly to f on every compact subset of D. Then f is holomorphic on D.
Maximum Modulus Principle
If f is a non-constant holomorphic function on a domain D\subset\mathbb{C}, then |f| does not attain a maximum value in D.
Corollary: Minimum Modulus Principle
If f is a non-constant holomorphic function on a domain D\subset\mathbb{C}, then \frac{1}{f} does not attain a minimum value in D.
Schwarz Lemma
If f is a holomorphic function on the unit disk |z|<1 and |f(z)|\leq |z|, then |f'(0)|\leq 1.
