4.8 KiB
Math416 Lecture 25
Continue on Residue Theorem
Review the definition of simply connected domain
A domain \Omega is called simply connected if \overline{C}\setminus \Omega is connected if and only if every closed curve in \Omega is null-homotopic in \Omega.
Proof:
Last time we proved \impliedby part.
If every closed curve in \Omega is null-homotopic in \Omega, then \operatorname{ind}_\Gamma(z)=0 for all z\in\mathbb{C}\setminus\Omega for all contour in \Omega.
\implies \mathbb{C}\setminus\Omega is connected.
\impliedby part:
....
Theorem 10.4-6
The following condition are equivalent:
\Omegais simply connected.- every holomorphic function on
\Omegahas a primitiveg, i.e.g'(z)=f(z)for allz\in \Omega. - every non-vanishing holomorphic function on
\Omegahas a holomorphic logarithm. - every harmonic function on
\Omegahas a harmonic conjugate.
Residue Theorem
Theorem 10.8 The Residue Theorem
Let \Omega be a domain, \Gamma be a contour such that \Gamma\cup \operatorname{int}(\Gamma)\subset \Omega
Let f be holomorphic on \Omega\setminus \{z_1, z_2, \cdots, z_n\} where z_1, z_2, \cdots, z_n are finitely many points in \Omega, where z_1, z_2, \cdots, z_n\notin \Gamma.
Then
\int_\Gamma f(z) dz = 2\pi i \sum_{j=1}^n\operatorname{ind}_{\Gamma}(z_j) \operatorname{res}_{z_j}(f)
Proof:
For each i\leq j\leq n, let C_j be a circle centered at z_j\in \Gamma\setminus \Omega such that \operatorname{int}(C_j)\subset \Omega, counterclockwise and pairwise disjoint.
Let \Gamma_1=\Gamma\setminus\{z_1, z_2, \cdots, z_n\}, \Gamma_1=\Gamma-\sum_{j=1}^n \operatorname{ind}_{\Gamma}(z_j)C_j (This excludes the singularities outside \Gamma)
f\in O(\Omega_1), \Gamma_1\in \Omega_1
and \operatorname{ind}_{\Gamma_1}(z)=0 for all z\in \mathbb{C}\setminus \Omega_1, either z\notin \Gamma or z\in\{z_1, z_2, \cdots, z_n\}.
\operatorname{ind}_{\Gamma_1}(z_j)=\operatorname{ind}_{\Gamma}(z_j)-1\cdot\operatorname{ind}_{C_j}(z_j)=0 for all j=1, 2, \cdots, n.
By Cauchy's theorem, \int_{\Gamma_1}f(z)dz=0.
So, since f(z)=\sum_{k=-\infty}^\infty a_k(z-z_0)^k, and \gamma(t)=z_k+Re^{it} for t\in[0, 2\pi],$\gamma'(t)=iRe^{it}$,
\begin{aligned}
\int_\Gamma f(z)dz&=\int_{\Gamma_1}f(z)dz+\sum_{j=1}^n\int_{C_j}f(z)dz\\
&=0+\sum_{j=1}^n \operatorname{ind}_{\Gamma}(z_j) \int_{C_j}f(z)dz\\
&=0+\sum_{j=1}^n \operatorname{ind}_{\Gamma}(z_j) \int_{0}^{2\pi}f(z_j+Re^{it})ie^{i\theta}dt\\
&=0+\sum_{j=1}^n \operatorname{ind}_{\Gamma}(z_j) \int_{0}^{2\pi}\left(\sum_{k=-\infty}^\infty a_k (z_j-z_0)^k e^{int}\right) iRe^{i\theta}dt\\
&=0+\sum_{j=1}^n \operatorname{ind}_{\Gamma}(z_j) i\sum_{k=-\infty}^\infty a_k R^{k+1}\left(\int_{0}^{2\pi} e^{i(k+1)t}dt\right)\\
&=\sum_{j=1}^n 2\pi i \operatorname{ind}_{\Gamma}(z_j) \operatorname{res}_{z_j}(f)\\
\end{aligned}
QED
Corollary 10.9 Cauchy's Integral Formula
If \Gamma is a simple contour, z_0\in \operatorname{int}(\Gamma), g\in O(\Omega), then
g(z_0)=\frac{1}{2\pi i}\int_\Gamma \frac{g(z)}{z-z_0}dz
Proof:
The right hand side is the residue of g(z)/(z-z_0) at z_0.
By the residue theorem,
Notice that g(z)=a_0+a_1(z-z_0)+a_2(z-z_0)^2+\cdots, and \frac{1}{z-z_0}=a_0\sum_{k=0}^\infty (z-z_0)^k.
So a_0=g(z_0), and a_k=\frac{g^{(k)}(z_0)}{k!} for k\geq 1.
\int_\Gamma \frac{g(z)}{z-z_0}dz=2\pi i \operatorname{res}_{z_0}\left(\frac{g(z)}{z-z_0}\right)=2\pi i g(z_0)
QED
Application to evaluating definite integrals
Idea:
It is easy to evaluate intervals around closed contours.
Choose contour so one side (where you want to integrate).
Handle the other side by:
- Symmetry
- length * supremum of absolute value of integrand
- Bound function by another function whose integral goes to zero.
Example:
Evaluate \int_0^\infty \frac{\sin x}{x}dx.
On the contour \gamma(t) be the semicircle in the upper half plane removed the origin.
Then let f(z)=\frac{e^{iz}}{z}=\frac{\cos z+i\sin z}{z}, by the Cauchy's theorem,
\int_\gamma f(z)dz=0
So \frac{\sin z}{z}=0 on \gamma.
If x\in \mathbb{R}, f(x)=\frac{e^{ix}}{x}=\frac{\cos x+i\sin x}{x}.
On the real axis,
\begin{aligned}
\int_{-R}^{-\epsilon}+\int_\epsilon^R f(x)dx&=\int_{-R}^{-\epsilon}\frac{e^{ix}}{x}dx+\int_\epsilon^R \frac{e^{ix}}{x}dx\\
&=\int_{-R}^{-\epsilon}\frac{\cos x+i\sin x}{x}dx+\int_\epsilon^R \frac{\cos x+i\sin x}{x}dx\\
&=\int_{-R}^{-\epsilon}\frac{\cos x}{x}dx+i\int_{-R}^{-\epsilon}\frac{\sin x}{x}dx+\int_\epsilon^R \frac{\cos x}{x}dx+i\int_\epsilon^R \frac{\sin x}{x}dx\\
&=2i\int_0^\infty \frac{\sin x}{x}dx
\end{aligned}
For the clockwise semi-circle around the origin,
\int_{S_\epsilon} f(z)dz=\int_{S_\epsilon}\frac{e^{iz}}{z}dz
let \gamma(t)=\epsilon e^{-it}, t\in[-\pi,0].
Then \gamma'(t)=-i\epsilon e^{-it},
CONTINUE NEXT TIME.