3.6 KiB
Lecture 22
Chapter V Eigenvalue and Eigenvectors
Upper Triangular Matrices 5C
Theorem 5.44
Let T\in \mathscr{L}(V) be a linear operator, then T has an upper triangular matrix (with respect to some basis), if the minimal polynomial is (z-\lambda_1)...(z-\lambda_m) for \lambda_1,..,\lambda_m\in \mathbb{F}
Proof:
\implies easy
\impliedby Suppose the minimal polynomial of T is (z-\lambda_1)...(z-\lambda_m)
Then we do induction on m.
Base case: m=1, then T-\lambda_1 I=0, T=\lambda I but \lambda I has an upper triangular matrix,
Induction step: m>1, Suppose the results holds for smaller m. Let u=range(T-\lambda_m I), U is invariant under T, consider T\vert_u.
Note that if u\in U, (T-\lambda_1 I)...(T-\lambda_{m-1} I)u=(T-\lambda_1 I)...(T-\lambda_m I)v=0. Thus the minimal polynomial of T\vert_U divides (z-\lambda_1)...(z-\lambda_{m-1})
Corollary 5.47 (staring point for Jordan Canonical Form)
Suppose V is a finite dimensional complex vector space, and T\in \mathscr{L}(V), then T has an upper triangular matrix with respect to some basis.
Recall: T is upper triangular \iff Tv_k\in Span\ (v_1,...,v_k). where v_1,...,v_n is a basis.
Let u_1,...,u_r be a basis for U such that Tu_k\in Span\ (v_1,...,v_k) (such thing exists because T is upper triangular.
Extend to a basis of V, u_1,..,u_r,v_1,...,v_s, then
Tv_k=((T-\lambda_m I)+\lambda_m I)v_k=(T-\lambda_m I)v_k+\lambda_m v_k
and (T-\lambda_m I)v_k\in U, \lambda_m v_k\in Span\ (u_1,..,u_r,v_k)
Thus with respect to the same basis u_1,..,u_r,v_1,...,v_s T is upper triangular.
M(T)=\begin{pmatrix}
M(T\vert_U) &\vert & *\\
\rule{2cm}{1pt}&&\rule{4cm}{0.4pt}\\
0 & \vert&\lambda \textup{ on the diagonal line}
\end{pmatrix}
Example:
$M(T)=\begin{pmatrix}
2&0&1\
0&2&1\
1&1&3
\end{pmatrix}$ and the minimal polynomial is (z-2)(z-2)(z-3)
v_1=(1,-1,0), v_2=(1,0,-1), v_3=(-1,1,0)
$M(T,(v_1,v_2,v_3))=\begin{pmatrix} 2&1&0\ 0&2&0\ 0&0&3 \end{pmatrix}$ which is upper triangular.
5D Diagonalizable Operations
Definition 5.48
A Diagonal matrix is a matrix where all entries except the diagonal is zero
Example: $I,0,\begin{pmatrix} 2&0&0\ 0&2&0\ 0&0&3 \end{pmatrix}$
Definition 5.50
An operator T\in\mathscr{L}(V) is diagonalizable if M(T) is diagonalizable with respect to some basis.
Example:
T:\mathbb{F}->\mathbb{F^2}
$M(T)=\begin{pmatrix}
3&-1\
-1&3&
\end{pmatrix} v_1=(1,-1), v_2=(1,1)$, T(v_1)=(4,-4)=4v_1, T(v_2)=(2,2)=2v_2, so the eigenvalues are 2 with eigenvector v_2, and 4 with eigenvector v_1. The eigenvectors for z are Span (v_2)\ \{0\}
$M(T,(v_1,v_2))=\begin{pmatrix}
4&0\
0&2
\end{pmatrix}$ and T is diagonalizable.
Definition 5.52
Let T\in \mathscr{L}(V),\lambda \in \mathbb{F}. the eigenspace of T corresponding to \lambda is the subspace E(\lambda, T)\in V defined by
E(\lambda, T)=null\ (T-\lambda I)=\{ v\in V\vert Tv=\lambda v\}
Example:
E(2,T)=Span\ (v_2) E(4,T)=Span\ (v_1), E(3,T)=\{0 \}
Theorem 5.54
Suppose T\in \mathscr{L}(V) \lambda_1,...,\lambda_m are distinct eigenvalues of T, Then
E(\lambda_1, T)+...+E(\lambda_m,T)
is a direct sum. In particular if V is finite dimensional.
dim\ (E(\lambda_1, T))+...+dim\ (E(\lambda_m,T))\leq dim\ V
Proof:
Need to show that if v_k\in E(\lambda_k,T) for k=1,...,m then v_1+...+v_m=0\iff v_k=0 for k=1,...,m. i.e eigenvectors for distinct eigenvalues are linearly independent. (Prop 5.11)