Files
NoteNextra-origin/content/Math429/Math429_L27.md
2025-07-06 12:40:25 -05:00

4.0 KiB

Lecture 27

Chapter VI Inner Product Spaces

Orthonormal basis 6B

Theorem 6.32 Gram-Schmidt

Suppose v_1,...,v_m is a linearly independent list. Let f_k\in V by f_1=v_1, and f_k=v_k-\sum_{j=1}^{k-1}\frac{\langle v_k,f_j\rangle }{||f_j||^2}f_j. Then set e_k=\frac{f_k}{||f_k||}, then e_1,...,e_m is orthonormal with Span(e_1,...,e_k)=Span(v_1,...,v_k) for each k=1,...,m

Proof: note is suffice to show that f_1,...,f_m is orthogonal and that Span(e_1,...,e_m)=Span(v_1,...,v_m) Induct on m.

When m=1: clear

When m>1: Suppose we know the result for values < m. Need to show that \langle f_m,f_k\rangle =0 for k<m.


\begin{aligned}
\langle f_m, f_k \rangle &=\langle v_m, f_k \rangle-\sum_{j=1}^{k-1}\frac{\langle v_m,f_j\rangle }{||f_j||^2} \langle f_j, f_k \rangle\\
&=\langle v_m, f_k \rangle-\frac{\langle v_m,f_k \rangle }{||f_j||^2} \langle f_k, f_k \rangle\\
&=\langle v_m, f_k \rangle-\langle v_m,f_k \rangle\\
&=0
\end{aligned}

Then we want to test if Span(f_1,...,f_m)=Span(v_1,...,v_m), given that Span(f_1,...,f_{m-1})=Span(v_1,...,v_{m-1}) (by induction)

Since f_m=v_m-\sum_{j=1}^{m-1}\frac{\langle v_m,f_j\rangle }{||f_j||^2}f_j, and \sum_{j=1}^{m-1}\frac{\langle v_m,f_j\rangle }{||f_j||^2}f_j \in Span(v_1,...,v_{m-1}), then f_m\in Span(v_1,...,v_m)

Since v_m=f_m-\sum_{j=1}^{m-1}\frac{\langle v_m,f_j\rangle }{||f_j||^2}f_j \in Span(f_1,...,f_m), then v_m\in Span(f_1,...,f_m)

Example: Find an orthonormal basis for \mathscr{P}_2(\mathbb{R}) with \langle p,q \rangle=\int^1_{-1}pq.

Start with 1,x,x^2, apply Gram-Schimidt procedure.

f_1=1,

f_2=x-\frac{\langle x,1 \rangle}{||1||^2}1=x-\frac{0}{2}\cdot 1 =x,

f_3=x^3-\frac{\langle x^2,1 \rangle}{||1||^2}1-\frac{\langle x^2,x \rangle}{||1||^2}x=x^2-\frac{2/3}{2}1=x^2-\frac{1}{3}

Convert it to orthonormal basis we have \sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x,\sqrt{\frac{45}{8}}(x^2-\frac{1}{3})

Theorem 6.35

Every finite dimensional inner product space has an orthonormal basis

Proof:

take any basis and apply Gram-Schmidt procedure.

Theorem 6.36

Every orthonormal list extends to an orthonormal basis.

Proof:

extend the basis and apply Gram-Schmidt procedure.

Theorem 6.37

V be a finite dimensional T\in \mathscr{L}(V). Then T has an upper triangular matrix with respect to an orthonormal basis \iff if the minimal polynomial is of the form (z-\lambda_1)\dots (z-\lambda_m)

Proof:

The critical step is T upper triangular with respect to v_1,...,v_n\iff Tv_k\in Span(v_1,...,v_k)

IMportantly, if e_1,...,e_n is the result of Gram-Schmidt, then the Span(v_1,...,v_k)=Span(e_1,...,e_k) for all k.

Tv_k\in Span(e_1,...,e_k) using the same work Te_k\in Span(e_1,...,e_k)

Corollary 6.37 (Schur's Theorem)

If V is finite dimensional complex vector space and T\in \mathscr{L}(V), then there exists an orthonormal basis where T is upper triangular.

Linear Functionals on Inner Product Spaces

Example: \varphi\in (\mathbb{R}^3)'=\mathscr{L}(\mathbb{R}^3,\mathbb{R}) given by \varphi(x,y,z)=2x+3y-z. note \varphi(V)=\langle v,(2,3,-1)\rangle where \langle,\rangle is the Euclidean inner product.

Theorem 6.42 (Riesz Representation Theorem)

Suppose that \varphi\in V'=\mathscr{L}(V,\mathbb{F}) on an inner product space V. Then there exists an unique vector v\in V such that \varphi(u)=\langle u, v\rangle

Proof:

Fix an orthonormal basis e_1,...,e_n,

\varphi(u)=\varphi(\langle u,e_1 \rangle e_1+...\langle u,e_n \rangle e_n)

Use linearity

\varphi(u)=\langle u,e_1 \rangle\varphi( e_1)+...\langle u,e_n \rangle \varphi(e_n)

Use the conjugates

\varphi(u)=\langle u,\overline{\varphi( e_1)} e_1 \rangle+...\langle u,\overline{\varphi( e_n)} e_n \rangle=\langle u,\overline{\varphi( e_1)} e_1 +...\overline{\varphi( e_n)} e_n \rangle

Set v=\overline{\varphi( e_1)} e_1 +...\overline{\varphi( e_n)} e_n, thus v exists.

uniqueness \langle v_1-v_2,v_1-v_2 \rangle=0 for any v_1,v_2 satifsying the conditions.