Files
NoteNextra-origin/content/Math429/Math429_L28.md
2025-07-06 12:40:25 -05:00

3.3 KiB

Lecture 28

Chapter VI Inner Product Spaces

Orthonormal basis 6B

Example:

Find a polynomial q\in \mathscr{P}_2(\mathbb{R}) such that


\int^1_{-1}p(t)cos(\pi t)dt=\int^1_{-1}p(t)q(t)dt

for p\in \mathscr{P}_2(\mathbb{R})

note that \varphi(p)=\int^1_{-1}p(t)cos(\pi t)cos(\pi t)dt is a linear functional. Thus by Riesz Representation Theorem, \exists unique q such that \varphi (p)=\langle p,q \rangle=\int^1_{-1}pq


q=\overline{\varphi(e_0)}e_0+\overline{\varphi(e_z)}e_z

where e_0,e_1,e_z is an orthonormal basis.

and q=\frac{15}{2\pi^2}(1-3x^2)

Orthogonal Projection and Minimization

Definition 6.46

If U is a subset of V, then the orthogonal complement of U denoted U^\perp


U^\perp=\{v\in V\vert \langle u,v\rangle =0,\forall u\in U\}

The set of vectors orthogonal to every vector in U.

Theorem 6.48

Let U be a subset of V.

(a) U^\perp is a subspace of V.
(b) \{0\}^\perp=V
(c) V^\perp =\{0\}
(d) U\cap U^\perp\subseteq\{0\}
(e) If G,H subsets of V with G\subseteq H, then H^\perp\subseteq G^\perp

Example:

Two perpendicular line in 2D plane.

Let e_1,...,e_m be an orthonormal list, let u=Span(e_1,...,e_m) How do I find U^\perp?

Extend to an orthonormal basis e_1,...,e_m,f_1...,f_n. U^\perp=Span(f_1,...,f_n)

Theorem 6.40

Suppose U is finite dimensional subspace of V, then V=U\oplus U^\perp

Proof:

Note U\cap U^\perp=\{0\}, so it suffices to show U+U^\perp=V. Fix an orthonormal basis e_1,...,e_m of U. Let v\in V, let u=\langle v,e_1\rangle e_1+...+\langle v,e_m\rangle e_m let w=v-u, then v=u+W we need to check that w\in U^\perp

\langle w,e_k \rangle=\langle v,e_k\rangle-\langle u,e_k\rangle=\langle v,e_k\rangle-\langle v,e_k\rangle=0

So w\in U^\perp

Corollary 6.51


dim\ U^\perp=dim\ V-dim\ U

Theorem 6.52

Let U be a finite dimensional of a vector space V. Then (U^\perp)^\perp=U

Proof:

First let u\in U we want to show u\in (U^\perp)^\perp, then \langle u,w \rangle=0 for all w\in U^\perp but then u\in (U^\perp)^\perp

Exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxercise on the other directiononoooonononon.

Corollary 6.54

U^\vert=\{0\}\iff U=V

Proof:

(U^\perp)^\perp=\{0\}^\perp\implies U=V

Definition 6.55

Given U a finite dimensional subspace of V. The orthogonal projection of V onto $U$ is the operator P_u\in \mathscr{L}(V) defined by: For each v write v=u+w where u\in U and w\in U^\perp then P_u v=u

Formula:

Let e_1,...,e_n an orthonormal basis of U.

P_u v=\langle v,e_1\rangle e_1+...+\langle v,e_m\rangle e_m

Theorem 6.57

(a) P_u is linear.
(b) P_u u=U,\forall u\in U
(c) P_u w=0,\forall w\in U^\perp
(d) range\ P_u=U
(e) null\ P_u=U^\vert
(f) v-P_u v\in U^\perp
(g) P_u^2=P_u
(h) ||P_u v||\leq ||v||

Proof:

(a) Let v,v'\in V and suppose v=u+w,v'=u'+w', then v+u'=(u+u')+(w+w') this implies that P_u(v+v')=u+u'=P_u v+ P_u v'

...

Theorem 6.58 Riesz Representation Theorem

Let V be a finite dimensional vector space for v\in V define \varphi_v\in V' by \varphi_v(u)=\langle u,v \rangle. Then the map v\to \varphi_v is a bijection.

Proof:

Surjectivity Ideal is let w\in (null\ \varphi)^\perp


v=\frac{\varphi(w)}{||w||^2}w,\varphi(v)=||v||^2

make sense \varphi_v=\varphi