3.1 KiB
Lecture 29
Chapter VI Inner Product Spaces
Orthogonal Complements and Minimization Problems 6C
Minimization Problems
Theorem 6.61
Suppose U is a finite dimensional subspace of V. Let v\in V, u\in U. Then ||v-P_u v||\leq|| v-u||. with equality if and only if u=P_u v
Proof:
Using triangle inequality
\begin{aligned}
||v-P_u v||^2 &\leq ||v-P_u v||^2+||P_u v-u||^2\\
&=||(v-P_u v)+(P_u v-u)||^2\\
&=||v-u||^2
\end{aligned}
Example:
Find $u(x)\in \mathscr{P}_5(\mathbb{R}) minimizing
\int^{\pi}_{-\pi}|sin(x)-u(x)|^2 dx
V=C([-\pi,\pi])= continuous (real valued) function on [-\pi,\pi]
u=\mathscr{P}_5(\mathbb{R}). Note U\subseteq V and u is finite dimensional.
\langle f,g \rangle=\int^{\pi}_{-\pi}fg gives an inner product on V.
Minimize ||sin-u||^2, choose an orthonormal basis e_0,...,e_5 of \mathscr{P}_5(\mathbb{R}), so u=P_u(sin)=\langle e_0,sin\rangle e_0+...+\langle e_5,sin \rangle e_5
Pseudo inverses
Idea: Want to (approximately) solve Tx=b.
- If
Tis invertiblex=T^{-1}b - If
Tis not invertible, wantT^{T}such thaty=T^{T}bis the "best solution"
Lemma 6.67
If V is a finite dimensional vector space, T\in \mathscr{L}(V,W) then T\vert_{{null\ T}^\perp} is one to one onto range\ T.
Proof:
Note (null\ T)^\perp \simeq V/(null\ T)
Exercise, prove this...
If v\in null(T\vert_{{null}^\perp})\implies v\in null\ T, and v\in (null\ T)^\perp\implies v=0
If w\in range\ T so \exists v\in V such that Tv=w write v as v=u+x sor u\in null\ T,x\in (null\ T)^\perp.
Definition 6.68
V is a finite dimensional space T\in \mathscr{L}(V,W). The pseudo-inverse denoted T^\dag\in \mathscr{L}(W,V) is given by
T^\dag w=(T\vert_{{null\ T}^\perp})^{-1}P_{range\ T}w
Some explanation:
Let T\in \mathscr{L}(V,W).Since there exists isomorphism between (null\ T)^\perp\subseteq V and range\ T\subseteq W.We can always map W to V using T^\dag\in \mathscr{L}(W,V). P_{range\ T} is the map that W\mapsto range\ T and (T\vert_{{null\ T}^\perp})^{-1} is a linear map that map $w\in W$
Proposition 6.69
V is a finite dimensional vector space. T\in\mathscr{L}(V,W), then
(a) If T is invertible, then T^\dag=T^{-1}.
(b) TT^\dag=P_{range\ T}.
(c) T^\dag T=P_{(null\ T)^\perp}.
Theorem 6.70
V is a finite dimensional vector space. T\in\mathscr{L}(V,W), for b\in W, then
(a) If x\in V, then ||T(T^* b)-b||\leq ||Tx-b|| with equality if and only if x\in T^\dag b+null\ T (T^\dag is the best solution we can have as "inverse" for non-invertible linear map)
(b) If x\in T^\dag b+null\ T then
||T^\dag b ||\leq ||x||
Proof:
(a) Tx-b=(Tx-TT^\dag b)+(TT^\dag b-b)
Using pythagorean theorem, we have
||Tx-b||\geq ||TT^\dag b-b||
Chapter VII Operators on Inner Product Spaces
Self adjoint and Normal Operators 7A
Definition 7.1
Let T\in \mathscr{L}(V,W), then the adjoint of T denoted T^* is the function T^*:W\to V such that \langle Tv,w \rangle =\langle v,T^* w \rangle
For euclidean inner product T^* is given by the conjugate transpose.