107 lines
3.9 KiB
Markdown
107 lines
3.9 KiB
Markdown
# Lecture 4
|
|
|
|
Office hour after lecture: Cupules I 109
|
|
|
|
## Chapter II Finite Dimensional Subspaces
|
|
|
|
### Span and Linear Independence 2A
|
|
|
|
#### Definition 2.2
|
|
|
|
Linear combination
|
|
|
|
Given a list (a finite list), of $\mathbb{F}$ vectors $\vec{v_1},...,\vec{v_m}$. A linear combination of $\vec{v_1},...,\vec{v_m}$ is a vector $\vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m},a_i\in \mathbb{F}$ (Adding vectors with different weights)
|
|
|
|
#### Definition 2.4
|
|
|
|
Span
|
|
|
|
The set of all linear combinations of $\vec{v_1},...,\vec{v_m}$ is called the span of $\{\vec{v_1},...,\vec{v_m}\}$
|
|
|
|
Span $\{\vec{v_1},...,\vec{v_m}\}=\{\vec{v}\in V, \vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}$
|
|
|
|
Note: When there is a nonzero vector in $\{\vec{v_1},...,\vec{v_m}\}$, the span is a infinite set.
|
|
|
|
Example:
|
|
|
|
Consider $V=\mathbb{R}^3$, find the span of the vector $\{(1,2,3),(1,1,1)\}$,
|
|
|
|
The span is $\{a_1\cdot (1,2,3),a_2\cdot (1,1,1):a_1,a_2\in \mathbb{R}\}=\{(a_1+a_2,2a_1+a_2,3a_1+a_2):a_1,a_2\in \mathbb{R}\}$
|
|
|
|
$(-1,0,1)\in Span((1,2,3),(1,1,1))$
|
|
|
|
$(1,0,1)\cancel{\in} Span((1,2,3),(1,1,1))$
|
|
|
|
#### Theorem 2.6
|
|
|
|
The span of a list of vectors in $V$ is the smallest subspace of $V$ containing this list.
|
|
|
|
Proof:
|
|
|
|
1. Span is a subspace
|
|
|
|
$Span\{\vec{v_1},...,\vec{v_m}\}=\{a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}$
|
|
|
|
* The zero vecor is inside the span by letting all the $a_i=0$
|
|
* Closure under addition: $a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}+b_1\vec{v_1}+b_2\vec{v_2}+...+b_m\vec{v_m}=(a_1+b_1)\vec{v_1}+(a_2+b_2)\vec{v_2}+...+(a_m+b_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$
|
|
* Closure under multiplication: $c(a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m})=(ca_1)\vec{v_1}+(ca_2)\vec{v_2}+...+(ca_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$
|
|
|
|
2. Span is the **smallest** subspace containing the given list.
|
|
|
|
For each $i\in\{1,...,m\}$, $\vec{v_i}=0\vec{v_1}+...+0\vec{v_{i-1}}+\vec{v_i}+0\vec{v_{i+1}}+...+0\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}$
|
|
|
|
If $W$ is a subspace of $V$ containing $Span\{\vec{v_1},...,\vec{v_m}\}$, then $W$ is closed under addition and scalar multiplication.
|
|
|
|
Thus for any $a_1,...,a_m\in \mathbb{F},a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\in W$. So $Span\{\vec{v_1},...,\vec{v_m}\}\subset W$
|
|
|
|
#### Definition 2.ex.1
|
|
|
|
Spanning set
|
|
|
|
If a vector space $V=Span\{\vec{v_1},...,\vec{v_m}\}$, then we say $\{\vec{v_1},...,\vec{v_m}\}$ spans $V$, which is the spanning set of $V$.
|
|
|
|
A vector space is called finite dimensional if it spanned by a **finite** list.
|
|
|
|
Example:
|
|
|
|
$\mathbb{F}^n$ is finite dimensional
|
|
|
|
$\mathbb{R}=Span\{(1,0,0),(0,1,0),(0,0,1)\}$
|
|
|
|
$(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)$
|
|
|
|
#### Definition
|
|
|
|
Polynomial
|
|
|
|
A polynomial is a **function** $p:\mathbb{F}\to \mathbb{F}$ such that $p(Z)=\sum_{i=0}^{m} a_i z^i,a_i\in \mathbb{F}$
|
|
|
|
Let $\mathbb{P}(\mathbb{F})$ be the set of polynomials over $\mathbb{F}$, then $\mathbb{P}(\mathbb{F})$ has the structure of a vector space.
|
|
|
|
If we consider the degree of polynomials, then $f=a_1f_1+...+a_mf_m$, with degree $f\leq max\{deg(f_1,...,f_m)\}$
|
|
|
|
$\mathbb{P}(\mathbb{F})$ is a infinite dimensional vector space.
|
|
|
|
Let $\mathbb{P}_m(\mathbb{F})$ be the set of polynomials of degree at mote $m$, then $\mathbb{P}_m(\mathbb{F})$ is a finite dimensional vectro space.
|
|
|
|
$\mathbb{P}_m(\mathbb{F})=Span\{1,z,z^2,...z^m\}$
|
|
|
|
#### Linear independence
|
|
|
|
How to find a "good" spaning set for a finite dimensional vector space.
|
|
|
|
Example:
|
|
|
|
$V=\mathbb{R^2}$
|
|
|
|
$\mathbb{R^2}=Span\{(1,0),(0,1)\}$
|
|
|
|
$\mathbb{R^2}=Span\{(1,0),(0,1),(0,0),(1,1)\}$
|
|
|
|
$\mathbb{R^2}=Span\{(1,2),(3,1),(4,25)\}$
|
|
|
|
#### Definition 2.15
|
|
|
|
A list of vector $\vec{v_1},...,\vec{v_m}$ in $V$ is called linearly independent if the only choice for $a_1,...,a_m\in \mathbb{F}$ such that $a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0}$ is $a_1=...=a_m=0$
|
|
|
|
If not, then there must $\exists\vec{v_i}$ that can be expressed by other vectors in the set. |