Files
NoteNextra-origin/content/Swap/CSE361S_L2.md
2025-07-06 12:40:25 -05:00

7.6 KiB

Lecture 2: Binary Representation

Bits review

  • 1 byte = 8 bits

Converting between binary and decimal

162_{10} = 10100010_{2}


\begin{aligned}
162_{10} &= 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \\
&= 128 + 32 + 2 \\
&= 162
\end{aligned}

Example Data representations

C Data Type Size (bytes 32bit) Size (bytes 64bit) x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Same size if declared as unsigned

Encoding Integers (w bits)

Unsigned Integers


B2U(X)= \sum_{i=0}^{w-1} x_i \cdot 2^i

Example:


\begin{aligned}
B2U(01101) &= 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \\
&= 0 + 8 + 4 + 0 + 1 \\
&= 13
\end{aligned}

\begin{aligned}
B2U(11101) &= 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \\
&= 16 + 8 + 4 + 0 + 1 \\
&= 29
\end{aligned}

Two's Complement


B2T(X)= -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i

Example:


\begin{aligned}
B2T(01101) &= 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \\
&= 0 + 8 + 4 + 0 + 1 \\
&= 13
\end{aligned}

\begin{aligned}
B2T(11101) &= -1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \\
&= -16 + 8 + 4 + 0 + 1 \\
&= -3
\end{aligned}

Sign Bit

  • For 2's complement, most significant bit is the sign bit
    • 0 for positive
    • 1 for negative

Numeric Ranges

  • Assume you have a integer type that is 4 bits long

    • Unsigned: 0 to 15
      • 0b1111=15
    • 2's Complement: -8 to 7
      • 0b1000=-8
  • Unsigned Values:

    • UMin=0=B2U(000\ldots 0)
    • UMax=2^w-1=B2U(111\ldots 1)
  • 2's Complement Values

    • TMin=-2^{w-1}=B2T(100\ldots 0)
    • TMax=2^{w-1}-1=B2T(011\ldots 1)
    • Other interesting values -1=B2T(111\ldots 1)

Values for different word sizez

W=8 W=16 W=32 W=64
TMin -128 -32768 -2147483648 -9223372036854775808
TMax 127 32767 2147483647 9223372036854775807
UMin 0 0 0 0
UMax 255 65535 4294967295 18446744073709551615

C Operators for bitwise operations

Boolean algebra

And

& 0 1
0 0 0
1 0 1

Example:

int a = 0b1010;
int b = 0b1100;
int c = a & b; //  should return 0b1000

Or

| 0 1
0 0 1
1 1 1

Example:

int a = 0b1010;
int b = 0b1100;
int c = a | b; //  should return 0b1110

Xor

^ 0 1
0 0 1
1 1 0

Example:

int a = 0b1010;
int b = 0b1100;
int c = a ^ b; //  should return 0b0110

Not

~ 0 1
1 0

Example:

int a = 0b1010;
int c = ~a; //  should return 0b0101

Imagine as set operations

  • & is intersection
  • | is union
  • ^ is exclusive or (symmetric difference)
  • ~ is complement

Logic operators on C

  • && is and
  • || is or
  • ! is not

Interesting properties:

  • View 0 as false and any non-zero value as true
  • Always returns 0 or 1
  • Early termination: if the first operand is 0, the second operand is not evaluated

Example:

int a = 0x69;
int b = 0x55;
int c = a && b; //  should return 0x01
int d = a || b; //  should return 0x01 (the program will not check b at all since a is non-zero by early termination)
int e = !a; //  should return 0x00
int f = !!a; //  should return 0x01
int g = !0; //  should return 0x01

int *p = NULL;
bool should_access = p && *p; //  (avoid null pointer access, returns 0 if p is NULL, otherwise returns true if *p is non-zero)

Using bit masks

// goal: compute val mod x and x is a power of 2
unsigned int val = 137; // some value to take mod of
unsigned int x = 16; // x is a power of 2
unsigned int mask = x - 1; // mask is a bit mask that is all 1s except for the least significant bit
unsigned int mod = val & mask; // mod is the result of val mod x

Shift operations

  • << is left shift
    • Shift bit-vector x left y positions
  • >> is right shift
    • Shift bit-vector x right y positions
    • Logical shift: fill with 0s
    • Arithmetic shift: fill with the sign bit
  • Undefined behavior: shift by a number greater than or equal to the word size

Example:

x 0b01100010
x<<3 0b00010000
Logical shift x>>2 0b00011000
Arithmetic shift x>>2 0b00011000

For negative numbers:

x 0b10100010
x<<3 0b00010000
Logical shift x>>2 0b00101000
Arithmetic shift x>>2 0b11101000

Pop count function

  • How do you implement a pop count function in a 4-byte memory?

Trivial way:

# define MASK 0x1;

int pop_count(unsigned int x) {
  // does not work for negative numbers
  int count = 0;
  while (x!=0) {
    if (x & MASK) count++;
    x >>= 1;
  }
  return count;
}

Casting Between Signed and Unsigned Integers in C

Constants

  • By default, constants are signed
  • To make a constant unsigned, add the U suffix
unsigned int a = 0x1234U;

Casting

  • Explicitly cast to a different type
int tx,ty;
unsigned int ux,uy;

tx = (int) ux;
uy = (unsigned) ty;
  • Implicit casting also occurs via assignments and procedure calls
tx = ux;
pop_count(tx); // popcount is a built-in function that returns the number of 1s in the binary representation of x (unsigned int)

When should I use unsigned integers?

  • Don't use just because the number are non-negative
    • Easy to make mistakes
unsigned i;
for (i = cnt-2; i < 0; i++) {
  // do something
}

If cnt=1 then i will be -1 and the loop will not terminate in short time. LOL.

  • Can be very subtle
#define DELTA sizeof(int) // sizeof(int) returns unsigned

int x = 0;
for (int i = CNT; i-DELTA >=0; i-=DELTA) {
  // do something
}

The expression i-DELTA >= 0 will be evaluated as unsigned and will not terminate.

Code Security Example

You can access the kernel memory region holding non user-accessible data. if you give negative index to the array, it will access the kernel memory region by interpreting the negative index as an unsigned integer.

Change int size

Extension

  • When operating with types of different widths, C automatically perform extension
  • Converting from smaller to larger type is always safe
    • Given w-bit integer x,
    • Convert x to w+k bit integer with the same value
  • Two different types of extension
    • zero extension: use for unsigned (similar to logical shift)
    • sign extension: use for signed (similar to arithmetic shift)

Truncation

  • Task:
    • Given w-bit integer x,
    • Convert x to k bit integer with the same value
  • Rule:
    • Drop high-order w-k bits
  • Effect:
    • can change the value of x
    • unsigned: mathematical mode on x
    • signed: reinterprets the bit (add -2^k to the value)

Code puzzle

what is the output of the following code?

unsigned short y=0xFFFF;
int x = y;
printf("%x", x); /* print the value of x as a hexadecimal number */

The output is 0x0000FFFF it will try to preserve the value of y by sign extending the value of y to x.