Files
NoteNextra-origin/content/CSE510/CSE510_L16.md
Zheyuan Wu b845aca63c updates
2025-10-21 12:50:11 -05:00

4.9 KiB

CSE510 Deep Reinforcement Learning (Lecture 16)

Deterministic Policy Gradient (DPG)

Learning Deterministic Policies

  • Deterministic policy gradients [Silver et al., ICML 2014]
    • Explicitly learn a deterministic policy.
    • a = \mu_\theta(s)
  • Advantages
    • Existing optimal deterministic policy for MDPs
    • Naturally dealing with a continuous action space
    • Expected to be more efficient than learning stochastic policies
      • Computing stochastic gradient requires more samples, as it integrates over both state and action space.
      • Deterministic gradient is preferable as it integrates over state space only.

Deterministic Policy Gradient

The objective function is:


J(\theta)=\int_{s\in S} \rho^{\mu}(s) r(s,\mu_\theta(s)) ds

where \rho^{\mu}(s) is the stationary distribution under the behavior policy \mu_\theta(s).

The policy gradient from the standard policy gradient theorem is:


\nabla_\theta J(\theta) = \mathbb{E}_{s\sim \rho^{\mu}}[\nabla_\theta Q^{\mu_\theta}(s,a)]=\mathbb{E}_{s\sim \rho^{\mu}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}]

Issues for DPG

The formulations up to now can only use on-policy data.

Deterministic policy can hardly guarantee sufficient exploration.

  • Solution: Off-policy training using a stochastic behavior policy.

Off-Policy Deterministic Policy Gradient (Off-DPG)

Use a stochastic behavior policy \beta(a|s). The modified objective function is:


J(\mu_\theta)=\int_{s\in S} \rho^{\beta}(s) Q^{\mu_\theta}(s,\beta(s)) ds

The gradients are:


\begin{aligned}
\nabla_\theta J(\mu_\theta) &\approx \int_{s\in S} \rho^{\beta}(s) \nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)} ds\\
&= \mathbb{E}_{s\sim \rho^{\beta}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}]
\end{aligned}

Importance sampling is avoided in the actor due to the absence of integral over actions.

Policy Evaluation in DPG

Importance sampling can also be avoided in the critic.

Gradient TD-like algorithm can be directly applied to the critic.


\mathcal{L}_{critic}(w) = \mathbb{E}[r_t+\gamma Q^w(s_{t+1},a_{t+1})-Q^w(s_t,a_t)]^2

Off-Policy Deterministic Actor-Critic


\delta_t=r_t+\gamma Q^w(s_{t+1},a_{t+1})-Q^w(s_t,a_t)

w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q^w(s_t,a_t)

\theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu_\theta(s_t) \nabla_a Q^{\mu_\theta}(s_t,a_t)\vert_{a=\mu_\theta(s_t)}

Deep Deterministic Policy Gradient (DDPG)

Insights from DQN + Deterministic Policy Gradients

- Use a replay buffer
  • Critic is updated every timestep (Sample from buffer, minibatch):

\mathcal{L}_{critic}(w) = \mathbb{E}[r_t+\gamma Q^w(s_{t+1},a_{t+1})-Q^w(s_t,a_t)]^2

Actor is updated every timestep:


\nabla_a Q(s_t,a;w)|_{a=\mu_\theta(s_t)} \nabla_\theta \mu_\theta(s_t)

Smoothing target updated at every timestep:


w_{t+1} = \tau w_t + (1-\tau) w_{t+1}

\theta_{t+1} = \tau \theta_t + (1-\tau) \theta_{t+1}

Exploration: add noise to the action selection: a_t = \mu_\theta(s_t) + \mathcal{N}_t

Batch normalization used for training networks

Extension of DDPG

Overestimation bias is an issue of Q-learning in which the maximization of a noisy value estimate


DDPG:\nabla_\theta J(\theta) = \mathbb{E}_{s\sim \rho^{\mu}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}]

Double DQN is not enough

Because the slow-changing policy in an actor-critic setting

  • the current and target value estimates remain too similar to avoid maximization bias.
  • Target value of Double DQN: r_t + \gamma Q^w'(s_{t+1},\mu_\theta(s_{t+1}))

TD3: Twin Delayed Deep Deterministic policy gradient

Address overestimation bias:

  • Double Q-learning is unbiased in tabular settings, but still slight overestimation with function approximation.

y_1 = r + \gamma Q^{\theta_2'}(s', \pi_{\phi_1}(s'))

y_2 = r + \gamma Q^{\theta_1'}(s', \pi_{\phi_2}(s'))

It is possible that Q^{\theta_2}(s, \pi_{\phi_1}(s)) > Q^{\theta_1}(s, \pi_{\phi_1}(s))

Clipped double Q-learning:


y_1 = r + \gamma \min_{i=1,2} Q^{\theta_i'}(s', \pi_{\phi_i}(s'))

High-variance estimates provide a noisy gradient.

Techniques in TD3 to reduce the variance:

  • Update the policy at a lower frequency than the value network.
  • Smoothing the value estimate:
    
    y=r+\gamma \mathbb{E}_{\epsilon}[Q^{\theta'}(s', \pi_{\phi'}(s')+\epsilon)]
    

Update target:


y=r+\gamma \mathbb{E}_{\epsilon}[Q^{\theta'}(s', \pi_{\phi'}(s')+\epsilon)]

where \epsilon\sim clip(\mathcal{N}(0, \sigma), -c, c)

Other methods

  • Generalizable Episode Memory for Deep Reinforcement Learning
  • Distributed Distributional Deep Deterministic Policy Gradient
    • Distributional critic
    • N-step returns are used to update the critic
    • Multiple distributed parallel actors
    • Prioritized experience replay