Files
NoteNextra-origin/pages/Math416/Math416_L2.md
Trance-0 ab313b135c update
2025-02-11 14:33:24 -06:00

5.0 KiB

Math416 Lecture 2

Review?


z_1=r_1(\cos\theta_1+i\sin\theta_1)=r_1\text{cis}(\theta_1)

z_2=r_2(\cos\theta_2+i\sin\theta_2)=r_2\text{cis}(\theta_2)

z_1z_2=r_1r_2\text{cis}(\theta_1+\theta_2)

\forall n\in \mathbb{Z}, z^n=r^n\text{cis}(n\theta)

De Moivre's Formula


\forall n\in \mathbb{Z}, z^n=r^n\text{cis}(n\theta)

New Fancy stuff

Claim:


\forall n\in \mathbb{Z}, z^{\frac{1}{n}}=\sqrt[n]{r}\text{cis}\left(\frac{1}{n}\theta\right)

Proof:

Take an $n$th power, De Moivre's formula holds \forall rational k\in \mathbb{Q}.

Example:

we calculate 1^{\frac{1}{3}}


1=\text{cis}\left(2k\pi\right)

1^{\frac{1}{3}}=\text{cis}\left(\frac{2k\pi}{3}\right)

When k=0, we get 1

When k=1, we get \text{cis}\left(\frac{2\pi}{3}\right)=-\frac{1}{2}+i\frac{\sqrt{3}}{2}

When k=2, we get \text{cis}\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-i\frac{\sqrt{3}}{2}

Strange example

Let p(x)=a_3x^3+a_2x^2+a_1x+a_0 be a polynomial with real coefficients.

Without loss of generality, Let a_3=1, x=y-\beta

We claim \beta=\frac{a_2}{3}


\begin{aligned}
p(x)&=(y-\beta)^3+a_2(y-\beta)^2+a_1(y-\beta)+a_0\\
&=y^3+\left(a_2-3\beta\right)y^2+\left(a_1-3\beta^2-2a_2\beta\right)y+\left(a_0-3\beta^3-3a_1\beta-a_2\beta^2\right)\\
\end{aligned}

It's sufficient to know how to solve real cubic equations.


q(x)=x^3+ax+b

Let x=w+\frac{c}{w}

Solve


\begin{aligned}
(w+\frac{c}{w})^3+a(w+\frac{c}{w})+b=0\\
w^3+3w\frac{c}{w}+3\frac{c^2}{w^2}+aw+\frac{ac}{w}+b=0\\
\end{aligned}

We choose c such that 3c+a=0, c=-\frac{a}{3}


\begin{aligned}
w^3+3\frac{c^2}{w}+b=0\\
w^6+bw^3+c^2=0\\
\end{aligned}

Notice that w^6+bw^3+c^2=0 is a quadratic equation in w^3.


w^3=\frac{-b\pm\sqrt{b^2-4c^3}}{2}

So w is a cube root of \frac{-b\pm\sqrt{b^2-4c^3}}{2}

x=w+\frac{c}{w}=w-\frac{a}{3w}

Example:


p(x)=x^3-3x+1=0

a=-3, b=1, c=-\frac{a}{3}=-\frac{-3}{3}=1


\begin{aligned}
w^3&=\frac{-b\pm\sqrt{b^2-4c^3}}{2}\\
&=\frac{-1\pm\sqrt{1-4}}{2}\\
&=\frac{-1\pm\sqrt{3}i}{2}\\
\end{aligned}

To take cube root of w,


w^3=\text{cis}\left(\frac{2\pi}{3}+2k\pi\right)

So

Case 1:


w=\text{cis}\left(\frac{2\pi}{9}+\frac{2k\pi}{3}\right)

It is sufficient to check k=0,1,2 by nth root of unity.

When k=0, w=\text{cis}\left(\frac{2\pi}{9}\right)

When k=1, w=\text{cis}\left(\frac{8\pi}{9}\right)

When k=2, w=\text{cis}\left(\frac{14\pi}{9}\right)

Case 2:


w=\text{cis}\left(\frac{4\pi}{9}+\frac{2k\pi}{3}\right)

When k=0, w=\text{cis}\left(\frac{4\pi}{9}\right)

When k=1, w=\text{cis}\left(\frac{10\pi}{9}\right)

When k=2, w=\text{cis}\left(\frac{16\pi}{9}\right)

So the final roots are:


w+\frac{c}{w}=w+\frac{1}{w}

\text{cis}(\theta)+\frac{1}{\text{cis}(\theta)}=\text{cis}(\theta)+\text{cis}(-\theta)=2\cos(\theta)

So the final roots are:


2\cos\left(\frac{2\pi}{9}\right), 2\cos\left(\frac{8\pi}{9}\right), 2\cos\left(\frac{14\pi}{9}\right), 2\cos\left(\frac{4\pi}{9}\right), 2\cos\left(\frac{10\pi}{9}\right), 2\cos\left(\frac{16\pi}{9}\right)

Remember \cos(2\pi-\theta)=\cos(\theta)

So the final roots are:


2\cos\left(\frac{2\pi}{9}\right), 2\cos\left(\frac{8\pi}{9}\right), 2\cos\left(\frac{14\pi}{9}\right)

Compact

A set K\in \mathbb{R}^n is compact if and only if it is closed and bounded. Compact Theorem in Math 4111

If \{x_n\}\in K, then there must be some point w such that every disk D(w,\epsilon) contains infinitely many points of K. Infinite Point Theorem about Compact Set in Math 4111

Unfortunately, \mathbb{C} is not compact.

Riemann Sphere and Complex Projective Space

Let \mathbb{C}\sim \mathbb{R}^2\subset \mathbb{R}^3

We put a unit sphere on the origin, and project the point on sphere to \mathbb{R}^2 by drawing a line through the north pole and the point on the sphere.

So all the point on the north pole is mapped to outside of the unit circle in \mathbb{R}^2.

all the point on the south pole is mapped to inside of the unit circle in \mathbb{R}^2.

The line through (0,0,1) and (\xi,\eta,\zeta) intersects the unit sphere at (x,y,0)

Line (tx,ty,1-t) intersects \zeta^2 at t^2x^2+t^2y^2+(1-t)^2=1

So t=\frac{2}{1+x^2+y^2}


\zeta=x+iy\mapsto \frac{1}{1+|\zeta|^2}(2Re(\zeta),2Im(\zeta),|\zeta|^2-1)

(\xi,\eta,\zeta)\mapsto \frac{\xi+i\eta}{1-\zeta}

This is a homeomorphism. \mathbb{C}\setminus\{\infty\}\simeq S^2

Derivative of a function

Suppose \Omega is an open subset of \mathbb{C}.

A function $f:\Omega\to \mathbb{C}$'s derivative is defined as


f'(\zeta_0)=\lim_{\zeta\to \zeta_0}\frac{f(\zeta)-f(\zeta_0)}{\zeta-\zeta_0}

f=u+iv, u,v:\Omega\to \mathbb{R}

How are f' and derivatives of u and v related?

  1. Differentiation and complex linearity applies to f

Chain rule applies


\frac{d}{d\zeta}(f(g(\zeta)))=f'(g(\zeta))g'(\zeta)

Polynomials


\frac{d}{d\zeta}\zeta^n=n\zeta^{n-1}