2.1 KiB
Math416 Lecture 19
Continue on the Laurent series
Laurent series
If f is holomorphic in A(z_0;R_1,R_2) then f=\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n where the Laurent series converges on the annulus A(z_0;R_1,R_2)
\int_{C(z_0,r)} f(z)(z-z_0)^{-k-1} dz = \sum_{n=-\infty}^{\infty} a_n \int_{C(z_0,r)} (z-z_0)^{n-k-1} dz=a_k 2\pi i
C(z_0,r)is a circle centered atz_0with radiusr
Isolated singularities
A punctured disk at z_0 is A(z_0;0,R)=\{z:0<|z-z_0|<R\}
Say a function f has an isolated singularity at z_0 if it is holomorphic in a punctured disk A(z_0;0,R)
f has a Laurent series in A(z_0;0,R)
f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n
that converges in A(z_0;0,R)
Principal part of a Laurent series
The principal part of a Laurent series is the sum of the terms with negative powers of (z-z_0)
\sum_{n=-\infty}^{-1} a_n (z-z_0)^n
Say the isolated singularity is
- removable if
a_n=0for alln<0- If
f(z)has a removable singularity atz_0, then extendfto\mathbb{D}_{z_0,R}by definingf(z_0)=a_0. This extendedfis holomorphic on\mathbb{D}_{z_0,R}andf(z)=\sum_{n=0}^{\infty} a_n (z-z_0)^nforz\in \mathbb{D}_{z_0,R}
- If
- pole if
a_{-k}\neq 0anda_n=0for alln<-k- A pole with order
1is a simple pole
- A pole with order
- essential if the cases above are not true
Example:
f(z)=\frac{\sin z}{z}has a removable singularity atz=0.
the power series is
\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots
So the Laurent series is
\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots
The singularity is removable by defining f(0)=1
f(z)=\frac{z^2-1}{(z-1)(z-3)}=\frac{(z-1)(z+1)}{(z-1)(z-3)}
There are two poles at z=1 and z=3
the singularity at z=1 is removable by defining f(1)=1
the singularity at z=3 is a simple pole with order 1 f(z)=\frac{z+1}{z-3}=\frac{(z-3)+4}{z-3}=4(z-3)^{-1}+1
f(z)=\frac{(z+1)^2(z+2)^3}{(z-1)^2(z-5)^6(z-8)}
there are three poles at z=1,5,8, the order of the poles are 2, 6, 1 respectively.