58 lines
1.7 KiB
Markdown
58 lines
1.7 KiB
Markdown
# Math4121 Lecture 19
|
|
|
|
## Continue on the "small set"
|
|
|
|
### Cantor set
|
|
|
|
#### Theorem: Cantor set is perfect, nowhere dense
|
|
|
|
Proved last lecture.
|
|
|
|
_Other construction of the set by removing the middle non-zero interval $(\frac{1}{n},n>0)$ and take the intersection of all such steps is called $SVC(n)$_
|
|
|
|
Back to $\frac{1}{3}$ Cantor set.
|
|
|
|
Every step we delete $\frac{2^{n-1}}{3^n}$ of the total "content".
|
|
|
|
Thus, the total length removed after infinitely many steps is:
|
|
|
|
$$
|
|
\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3}\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n=1
|
|
$$
|
|
|
|
However, the quarter cantor set removes $\frac{3^{n-1}}{4^n}$ of the total "content", and the total length removed after infinitely many steps is:
|
|
|
|
Every time we remove $\frac{1}{4^n}$ of the remaining intervals. So on each layer, we remove $\frac{2^{n-1}}{4^n}$ of the total "content".
|
|
|
|
So the total length removed is:
|
|
|
|
$$
|
|
\begin{aligned}
|
|
1-\frac{1}{4}-\frac{2}{4^2}-\frac{2^2}{4^3}-\cdots&=1-\frac{1}{4}\sum_{n=0}^{\infty} \left(\frac{2}{4}\right)^n\\
|
|
&=1-\frac{1}{4}\cdot\frac{1}{1-\frac{2}{4}}\\
|
|
&=1-\frac{1}{4}\cdot\frac{4}{2}\\
|
|
&=1-\frac{1}{2}\\
|
|
&=\frac{1}{2}
|
|
\end{aligned}
|
|
$$
|
|
|
|
#### Generalized Cantor set (SVC(n))
|
|
|
|
The outer content of $SVC(n)$ is $\frac{n-3}{n-2}$.
|
|
|
|
#### Monotonicity of outer content
|
|
|
|
If $S\subseteq T$, then $c_e(S)\leq c_e(T)$.
|
|
|
|
<details>
|
|
<summary>Proof of Monotonicity of outer content</summary>
|
|
|
|
If $C$ is cover of $T$, then $S\subseteq T\subseteq C$, so $C$ is a cover of $S$. Since $c_e(s)$ takes the inf over a larger set that $c_e(T)$, $c_e(S) \leq c_e(T)$.
|
|
|
|
</details>
|
|
|
|
#### Theorem Osgood's Lemma
|
|
|
|
Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.
|
|
|