Files
NoteNextra-origin/content/Math4121/Math4121_L27.md
2025-09-24 01:27:46 -05:00

3.5 KiB

Math4121 Lecture 27

Lebesgue Measure

Outer Measure


m_e(S)=\inf\left\{\sum_{n=1}^\infty \ell(I_n): S\subset \bigcup_{n=1}^\infty I_n\right\}

where I_j is an open interval

Properties:

  1. m_e(I)=\ell(I)
  2. Countably sub-additive: m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq \sum_{n=1}^\infty m_e(S_n) (Prove today)
  3. does not respect complementation (Build in to Borel measure)

Why does Jordan content respect complementation?

(\text{Finite union of intervals })^C=\text{another finite union of intervals}

We know this failed for countable unions.

Example:


\bigcup_{n=1}^\infty \left(q_n-\frac{\epsilon}{2^n},q_n+\frac{\epsilon}{2^n}\right)

Where q_n is dense.

Inner Measure

Say S\subset I


m_i(S)=m(I)-m_e(I\setminus S)

where m(I)=\ell(I)

Say S is (Lebesgue) measurable if m_i(S)=m_e(S), call this value m(S)=m_e(S)=m_i(S) the (Lebesgue) measure of S.

Corollary of measurability of subsets

If S is measurable, and S\subset T, then


m(S)=m_e(S)=m(I)-m_e(I\setminus S)

m(I\setminus S)=m(I)-m(S)

I\setminus S is Lebesgue measurable and m(I)=m(S)+m(I\setminus S)

Proposition 5.8 (Countable additivity over measurable sets)

If S_n are measurable, then


m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq\sum_{n=1}^\infty m(S_n)
Proof

Let \epsilon>0 and for each j, let \{I_{i,j}\}_{i=1}^\infty be a cover of S_j s.t.


\sum_{i=1}^\infty \ell(I_{i,j})<m(S_j)+\frac{\epsilon}{2^j}

Then \bigcup_{j=1}^\infty \bigcup_{i=1}^\infty I_{i,j} is a countable cover of \bigcup_{j=1}^\infty S_j and


m_e\left(\bigcup_{j=1}^\infty S_j\right)\leq \sum_{j=1}^\infty \sum_{i=1}^\infty \ell(I_{i,j})<\sum_{j=1}^\infty \left(m_e(S_j)+\frac{\epsilon}{2^j}\right)=\sum_{j=1}^\infty m_e(S_j)+\epsilon

Since \epsilon is arbitrary, we have


m_e\left(\bigcup_{j=1}^\infty S_j\right)\leq\sum_{j=1}^\infty m_e(S_j)=\sum_{j=1}^\infty m(S_j)

Corollary: inner measure is always less than or equal to outer measure


m_i(S)\leq m_e(S)
Proof

m_i(S)=m(I)-m_e(I\setminus S)\leq m(I)-m_i(I\setminus S)=m_e(S)

Caratheodory's Criterion

Lemma 5.7 (Local additivity)

If \{I_j\}_{j=1}^\infty are pairwise disjoint open intervals, then


m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)=m_e\left(\bigcup_{j=1}^\infty (S\cap I_j)\right)=\sum_{j=1}^\infty m_e(S\cap I_j)
Proof

For each j, let \{J_i\}_{i=1}^\infty be a cover of S\cap \left(\bigcup_{j=1}^\infty I_j\right) such that \sum_{i=1}^\infty \ell(J_i)<c_e(S\cap \left(\bigcup_{j=1}^\infty I_j\right))+\epsilon. Since \{I_j\}_{j=1}^\infty are pairwise disjoint, so is \{J_i\cap I_j\}_{j=1}^\infty for each i.


\sum_{j=1}^\infty m_e(J_i\cap I_j)=m_e(J_i)

\begin{aligned}
m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)&\leq \sum_{j=1}^\infty m_e(S\cap I_j)\\
&\leq \sum_{j=1}^\infty m_e(\bigcup_{i=1}^\infty J_i\cap I_j)\\
&= \sum_{j=1}^\infty m_e(J_i)+\epsilon
\end{aligned}

Since \epsilon is arbitrary, we have


m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)\leq \sum_{j=1}^\infty m_e(S\cap I_j)

Theorem 5.6 (Caratheodory's Criterion)

A set S is measurable if and only if for every set X\in \mathbb{R} of finite outer measure,


m_e(X)=m_e(X\cap S)+m_e(X\setminus S)

Lebesgue: X=I and S\subset I we can cut any set by a measurable set to get a measurable set. (no matter how big the set is)