191 lines
4.3 KiB
Markdown
191 lines
4.3 KiB
Markdown
# Math416 Lecture 10
|
|
|
|
## Fast reload on Power Series
|
|
|
|
Suppose $\sum_{n=0}^\infty a_n$ converges absolutely. ($\sum_{n=0}^\infty |a_n|<\infty$)
|
|
|
|
Then rearranging the terms of the series does not affect the sum of the series.
|
|
|
|
For any permutation $\sigma$ of the set of positive integers, $\sum_{n=0}^\infty a_{\sigma(n)}=\sum_{n=0}^\infty a_n$.
|
|
|
|
Proof:
|
|
|
|
Let $\epsilon>0$, then $\exists N\in\mathbb{N}$ such that $\forall n\geq N$,
|
|
|
|
$$
|
|
\sum_{n=N}^\infty |a_n|<\epsilon
|
|
$$
|
|
|
|
So there exists $N_0$ such that if $M\geq N_0$, then
|
|
|
|
$$
|
|
\sum_{n=N_0}^M |a_n|<\epsilon
|
|
$$
|
|
|
|
_for any first $M$ terms of $\sigma$, we choose $N_0$ such that all the terms (no overlapping with the first $M$ terms) on the tail is less than $\epsilon$_.
|
|
|
|
$$
|
|
\sum_{n=1}^{\infty} a_n=\sum_{n=1}^{M} a_n+\sum_{n=M+1}^\infty a_n
|
|
$$
|
|
|
|
Let $K>N$, $L>N_0$,
|
|
|
|
$$
|
|
\left|\sum_{n=1}^{K}a_n-\sum_{n=1}^{L}a_{\sigma(n)}\right|<2\epsilon
|
|
$$
|
|
|
|
EOP
|
|
|
|
## Chapter 4 Complex Integration
|
|
|
|
### Complex Integral
|
|
|
|
#### Definition 6.1
|
|
|
|
If $\phi(t)$ is a complex function defined on $[a,b]$, then the integral of $\phi(t)$ over $[a,b]$ is defined as
|
|
|
|
$$
|
|
\int_a^b \phi(t) dt = \int_a^b \text{Re}\{\phi(t)\} dt + i\int_a^b \text{Im}\{\phi(t)\} dt
|
|
$$
|
|
|
|
#### Theorem 6.3 (Triangle Inequality)
|
|
|
|
If $\phi(t)$ is a complex function defined on $[a,b]$, then
|
|
|
|
$$
|
|
\left|\int_a^b \phi(t) dt\right| \leq \int_a^b |\phi(t)| dt
|
|
$$
|
|
|
|
Proof:
|
|
|
|
Let $\lambda(t)=\frac{\left|\int_a^t \phi(t) dt\right|}{\int_a^t |\phi(t)| dt}$, then $\left|\lambda(t)\right|=1$.
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\left|\int_a^b \phi(t) dt\right|&=\lambda\int_a^b \phi(t) dt\\
|
|
&=\int_a^b \lambda(t)\phi(t) dt\\
|
|
&=\text{Re} \{\int_a^b \lambda(t)\phi(t) dt\}\\
|
|
&\leq\int_a^b |\lambda(t)\phi(t)| dt\\
|
|
&=\int_a^b |\phi(t)| dt
|
|
\end{aligned}
|
|
$$
|
|
|
|
Assume $\phi$ is continuous on $[a,b]$, the equality means $\lambda(t)\phi(t)$ is real and positive everywhere on $[a,b]$, which means $\arg \phi(t)$ is constant.
|
|
|
|
EOP
|
|
|
|
#### Definition 6.4 Arc Length
|
|
|
|
Let $\gamma$ be a curve in the complex plane defined by $\gamma(t)=x(t)+iy(t)$, $t\in[a,b]$. The arc length of $\gamma$ is given by
|
|
|
|
$$
|
|
\Gamma=\int_a^b |\gamma'(t)| dt=\int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt
|
|
$$
|
|
|
|
N.B. If $\int_{\Gamma} f(\zeta) d\zeta$ depends on orientation of $\Gamma$, but not the parametrization.
|
|
|
|
We define
|
|
|
|
$$
|
|
\int_{\Gamma} f(\zeta) d\zeta=\int_{\Gamma} f(\gamma(t))\gamma'(t) dt
|
|
$$
|
|
|
|
Example:
|
|
|
|
Suppose $\Gamma$ is the circle centered at $z_0$ with radius $R$
|
|
|
|
$$
|
|
\int_{\Gamma} \frac{1}{\zeta-z_0} d\zeta
|
|
$$
|
|
|
|
Parameterize the unit circle:
|
|
|
|
$$
|
|
\gamma(t)=z_0+Re^{it}\quad
|
|
\gamma'(t)=iRe^{it}, t\in[0,2\pi]
|
|
$$
|
|
|
|
$$
|
|
f(\zeta)=\frac{1}{\zeta-z_0}
|
|
$$
|
|
|
|
$$
|
|
f(\gamma(t))=\frac{1}{(z_0+Re^{it})-z_0}
|
|
$$
|
|
|
|
$$
|
|
\int_{\Gamma} f(\zeta) d\zeta=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i
|
|
$$
|
|
|
|
#### Theorem 6.11 (Uniform Convergence)
|
|
|
|
If $f_n(z)$ converges uniformly to $f(z)$ on $\Gamma$, assume length of $\Gamma$ is finite, then
|
|
|
|
$$
|
|
\lim_{n\to\infty} \int_{\Gamma} f_n(z) dz = \int_{\Gamma} f(z) dz
|
|
$$
|
|
|
|
Proof:
|
|
|
|
Let $\epsilon>0$, since $f_n(z)$ converges uniformly to $f(z)$ on $\Gamma$, there exists $N\in\mathbb{N}$ such that for all $n\geq N$,
|
|
|
|
$$
|
|
\left|f_n(z)-f(z)\right|<\epsilon
|
|
$$
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\left|\int_{\Gamma} f_n(z) dz - \int_{\Gamma} f(z) dz\right|&=\left|\int_{\Gamma} (f_n(\gamma(t))-f(\gamma(t)))\gamma'(t) dt\right|\\
|
|
&\leq \int_{\Gamma} |f_n(\gamma(t))-f(\gamma(t))||\gamma'(t)| dt\\
|
|
&\leq \int_{\Gamma} \epsilon|\gamma'(t)| dt\\
|
|
&=\epsilon\text{length}(\Gamma)
|
|
\end{aligned}
|
|
$$
|
|
|
|
EOP
|
|
|
|
#### Theorem 6.6 (Integral of derivative)
|
|
|
|
Suppose $\Gamma$ is a closed curve, $\gamma:[a,b]\to\mathbb{C}$ and $\gamma(a)=\gamma(b)$.
|
|
|
|
$$
|
|
\begin{aligned}
|
|
\int_{\Gamma} f'(z) dz &= \int_a^b f'(\gamma(t))\gamma'(t) dt\\
|
|
&=\int_a^b \frac{d}{dt}f(\gamma(t)) dt\\
|
|
&=f(\gamma(b))-f(\gamma(a))\\
|
|
&=0
|
|
\end{aligned}
|
|
$$
|
|
|
|
EOP
|
|
|
|
Example:
|
|
|
|
Let $R$ be a rectangle $\{-a,a,ai+b,ai-b\}$, $\Gamma$ is the boundary of $R$ with positive orientation.
|
|
|
|
Let $\int_{R} e^{-\zeta^2}d\zeta$.
|
|
|
|
Is $e^{-\zeta^2}=\frac{d}{d\zeta}f(\zeta)$?
|
|
|
|
Yes, since
|
|
|
|
$$
|
|
e^{\zeta^2}=1-\frac{\zeta^2}{1!}+\frac{\zeta^4}{2!}-\frac{\zeta^6}{3!}+\cdots=\frac{d}{d\zeta}\left(\frac{\zeta}{1!}-\frac{1}{3}\frac{\zeta^3}{2!}+\frac{1}{5}\frac{\zeta^5}{3!}-\cdots\right)
|
|
$$
|
|
|
|
This is polynomial, therefore holomorphic.
|
|
|
|
So
|
|
|
|
$$
|
|
\int_{R} e^{\zeta^2}d\zeta = 0
|
|
$$
|
|
|
|
with some limit calculation, we can get
|
|
|
|
<!--TODO: Fill the parts-->
|
|
|
|
$$
|
|
\int_{R} e^{-\zeta^2}d\zeta = 2\pi i
|
|
$$
|