Files
NoteNextra-origin/content/CSE347/CSE347_L2.md
2025-09-17 14:27:46 -05:00

334 lines
7.5 KiB
Markdown

# CSE347 Analysis of Algorithms (Lecture 2)
## Divide and conquer
Review of CSE 247
1. Divide the problem into (generally equal) smaller subproblems
2. Recursively solve the subproblems
3. Combine the solutions of subproblems to get the solution of the original problem
- Examples: Merge Sort, Binary Search
Recurrence
Master Method:
$$
T(n)=aT(\frac{n}{b})+\Theta(f(n))
$$
### Example 1: Multiplying 2 numbers
Normal Algorithm:
```python
def multiply(x,y):
p=0
for i in y:
p+=x*y
return p
```
divide and conquer approach
```python
def multiply(x,y):
n=max(len(x),len(y))
if n==1:
return x*y
xh,xl=x>>(n/2),x&((1<<n/2)-1)
yh,yl=y>>(n/2),y&((1<<n/2)-1)
return (multiply(xh,yh)<<n)+((multiply(xh,yl)+multiply(yh,xl))<<(n/2))+multiply(xl,yl)
```
$$
T(n)=4T(n/2)+\Theta(n)=\Theta(n^2)
$$
Not a useful optimization
But,
$$
multiply(xh,yl)+multiply(yh,xl)=multiply(xh-xl,yh-yl)+multiply(xh,yh)+multiply(xl,yl)
$$
```python
def multiply(x,y):
n=max(len(x),len(y))
if n==1:
return x*y
xh,xl=x>>(n/2),x&((1<<n/2)-1)
yh,yl=y>>(n/2),y&((1<<n/2)-1)
zhh=multiply(xh,yh)
zll=multiply(xl,yl)
return (zhh<<n)+((multiply(xh-xl,yh-yl)+zhh+zll)<<(n/2))+zll
```
$$
T(n)=3T(n/2)+\Theta(n)=\Theta(n^{\log_2 3})\approx \Theta(n^{1.58})
$$
### Example 2: Closest Pairs
Input: $P$ is a set of $n$ points in the plane. $p_i=(x_i,y_i)$
$$
d(p_i,p_j)=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}
$$
Goal: Find the distance between the closest pair of points.
Naive algorithm: iterate all pairs ($O(n)=\Theta(n^2)$).
Divide and conquer algorithm:
Preprocessing: Sort $P$ by $x$ coordinate to get $P_x$.
Base case:
- 1 point: clostest d = inf
- 2 points: clostest d = d(p_1,p_2)
Divide Step:
Compute mid point and get $Q, R$.
Recursive step:
- $d_l$ closest pair in $Q$
- $d_r$ closest pair in $R$
Combine step:
Calculate $d_c$ closest point such that one point is on the left side and the other is on the right.
return $min(d_c,d_l,d_r)$
Total runtime:
$$
T(n)=2T(n/2)+\Theta(n^2)
$$
Still no change.
Important Insight: Can reduce the number of checks
**Lemma:** If all points within this square are at least $\delta=min\{d_r,d_l\}$ apart, there are at most 4 points in this square.
A better algorithm:
1. Divide $P_x$ into 2 halves using the mid point
2. Recursively computer the $d_l$ and $d_r$, take $\delta=min(d_l,d_r)$.
3. Filter points into y-strip: points which are within $(mid_x-\delta,mid_x+\delta)$
4. Sort y-strip by y coordinate. For every point $p$, we look at this y-strip in sorted order starting at this point and stop when we see a point with y coordinate $>p_y +\delta$
```python
# d is distance function
def closestP(P,d):
Px=sorted(P,key=lambda x:x[0])
def closestPRec(P,d):
n=len(P)
if n==1:
return float('inf')
if n==2:
return d(P[0],P[1])
Q,R=Px[:n//2],Px[n//2:]
midx=R[0][0]
dl,dr=closestP(Q),closestP(R)
dc=min(dl,dr)
ys=[i if midx-dc<i[0]<midx+dc for i in P]
ys.sort()
yn=len(ys)
# this step below checks at most 4 points, (but still runs O(n))
for i in range(yn):
for j in range(i,yn):
curd=d(ys[i],ys[j])
if curd>dc:
break
dc=min(dc,curd)
return dc
return closestPRec(Px,d):
```
Runtime analysis:
$$
T(n)=2T(n/2)+\Theta(n\log n)=\Theta(n\log^2 n)
$$
We can do even better by presorting Y
1. Divide $P_x$ into 2 halves using the mid point
2. Recursively computer the $d_l$ and $d_r$, take $\delta=min(d_l,d_r)$.
3. Filter points into y-strip: points which are within $(mid_x-\delta,mid_x+\delta)$ by visiting presorted $P_y$
```python
# d is distance function
def closestP(P,d):
Px=sorted(P,key=lambda x:x[0])
Py=sorted(P,key=lambda x:x[1])
def closestPRec(P,d):
n=len(P)
if n==1:
return float('inf')
if n==2:
return d(P[0],P[1])
Q,R=Px[:n//2],Px[n//2:]
midx=R[0][0]
dl,dr=closestP(Q),closestP(R)
dc=min(dl,dr)
ys=[i if midx-dc<i[0]<midx+dc for i in Py]
yn=len(ys)
# this step below checks at most 4 points, (but still runs O(n))
for i in range(yn):
for j in range(i,yn):
curd=d(ys[i],ys[j])
if curd>dc:
break
dc=min(dc,curd)
return dc
return closestPRec(Px,d):
```
Runtime analysis:
$$
T(n)=2T(n/2)+\Theta(n)=\Theta(n\log n)
$$
## In-person lectures
$$
T(n)=aT(n/b)+f(n)
$$
$a$ is number of sub problems, $n/b$ is size of subproblems, $f(n)$ is the cost of divide and combine cost.
### Example 3: Max Contiguous Subsequence Sum (MCSS)
Given: array of integers (positive or negative), $S=[s_1,s_2,...,s_n]$
Return: $max\{\sum^i_{k=i} s_k|1\leq i\leq n, i\leq j\leq n\}$
Trivial solution:
brute force
$O(n^3)$
A bit better solution:
$O(n^2)$ use prefix sum to reduce cost for sum.
Divide and conquer solution.
```python
def MCSS(S):
def MCSSMid(S,i,j,mid):
res=S[j]
for l in range(i,j):
curS=0
for r in range(l,j):
curS+=S[r]
res=max(res,curS)
return res
def MCSSRec(i,j):
if i==j:
return S[i]
mid=(i+j)//2
L,R=MCSSRec(i,mid),MCSSRec(mid,j)
C=MCSSMid(i,j)
return min([L,C,R])
return MCSSRec(0,len(S))
```
If `MCSSMid(S,i,j,mid)` use trivial solution, the running time is:
$$
T(n)=2T(n/2)+O(n^2)=\Theta(n^2)
$$
and we did nothing.
Observations: Any contiguous subsequence that starts on the left and ends on the right can be split into two parts as `sum(S[i:j])=sum(S[i:mid])+sum(S[mid,j])`
and let $LS$ be the subsequence that has the largest sum that ends at mid, and $RS$ be the subsequence that has the largest sum on the right that starts at mid.
**Lemma:** Biggest subsequence that contains `S[mid]` is $LS+RP$
Proof:
By contradiction,
Assume for the sake of contradiction that $y=L'+R'$ is a sum of such a subsequence that is larger than $x$ ($y>x$).
Let $z=LS+R'$, since $LS\geq L'$, by definition of $LS$, then $z\geq y$, WOLG, $RS\geq R'$, $x\geq y$, which contradicts that $y>x$.
Optimized function as follows:
```python
def MCSS(S):
def MCSSMid(S,i,j,mid):
res=S[mid]
LS,RS=0,0
cl,cr=0,0
for l in range(mid-1,i-1,-1):
cl+=S[l]
LS=max(LS,cl)
for r in range(mid+1,j):
cr+=S[r]
RS=max(RS,cr)
return res+LS+RS
def MCSSRec(i,j):
if i==j:
return S[i]
mid=(i+j)//2
L,R=MCSSRec(i,mid),MCSSRec(mid,j)
C=MCSSMid(i,j)
return min([L,C,R])
return MCSSRec(0,len(S))
```
The running time is:
$$
T(n)=2T(n/2)+O(n)=\Theta(n\log n)
$$
Strengthening the recusions:
```python
def MCSS(S):
def MCSSRec(i,j):
if i==j:
return S[i],S[i],S[i],S[i]
mid=(i+j)//2
L,lp,ls,sl=MCSSRec(i,mid)
R,rp,rs,sr=MCSSRec(mid,j)
return min([L,R,ls+rp]),max(lp,sl+rp),max(rs,sr+ls),sl+sr
return MCSSRec(0,len(S))
```
Pre-computer version:
```python
def MCSS(S):
pfx,sfx=[0],[S[-1]]
n=len(S)
for i in range(n-1):
pfx.append(pfx[-1]+S[i])
sfx.insert(sfx[0]+S[n-i-2],0)
def MCSSRec(i,j):
if i==j:
return S[i],pfx[i],sfx[i]
mid=(i+j)//2
L,lp,ls=MCSSRec(i,mid)
R,rp,rs=MCSSRec(mid,j)
return min([L,R,ls+rp]),max(lp,sfx[mid]-sfx[i]+rp),max(rs,sfx[j]-sfx[mid]+ls)
return MCSSRec(0,n)
```
$$
T(n)=2T(n/2)+O(1)=\Theta(n)
$$