3.3 KiB
Lecture 11
Chapter III Linear maps
Assumption: U,V,W are vector spaces (over \mathbb{F})
Matrices 3C
Definition 3.31
Suppose T\in \mathscr{L}(V,W), v_1,...,v_n a basis for V w_1,...,w_m a basis for W. Then M(T)=M(T,(v_1,...,v_n),(w_1,...,w_m)) is given by $M(T)=A$n where
T_{v_k}=A_{1,k}w_1+...+A_{m,k}w_m
\begin{matrix}
& & v_1& & v_2&&...&v_n&
\end{matrix}\\
\begin{matrix}
w_1\\w_2\\.\\.\\.\\w_m
\end{matrix}
\begin{pmatrix}
A_{1,1} & A_{1,2} &...& A_{1,n}\\
A_{2,1} & A_{2,2} &...& A_{2,n}\\
. & . &...&.\\
. & . &...&.\\
. & . &...&.\\
A_{m,1} & A_{m,2} &...& A_{m,n}\\
\end{pmatrix}
Example:
-
T:\mathbb{F}^2\to \mathbb{F}^3T(x,y)=(x+3y,2x+5y,7x+9y)$M(T)=\begin{pmatrix} 1&3\ 2&5\ 7&9 \end{pmatrix}$
-
Let
D:\mathscr{P}_3(\mathbb{F})\to \mathscr{P}_2(\mathbb{F})be differentiation$M(T)=\begin{pmatrix} 0&1&0&0\ 0&0&2&0\ 0&0&0&3\ \end{pmatrix}$
Lemma 3.35
S,T\in \mathscr{L}(V,W), M(S+T)=M(S)+M(T)
Lemma 3.38
\forall \lambda\in \mathbb{F},T\in \mathscr{L}(V,W), M(\lambda T)=\lambda M(T)
M:\mathscr{L}(V,W)\to \mathbb{F}^{n,m} is a linear map
Matrix multiplication
Definition 3.41
(AB)_{j,k}=\sum^{n}_{r=1} A_{j,r}B_{r,k}
Theorem 3.42
T\in \mathscr{L}(U,V), S\in\mathscr{L}(V,W) then M(S,T)=M(S)M(T) (dim (U)=p, dim(V)=n, dim(W)=m)
Proof:
Let w_1,...,v_n be a basis for V, w_1,..,w_m be a basis for W u_1,..,u_p be a basis of U.
Let A=M(S),B=M(T)
Compute M(ST) by Definition 3.31
\begin{aligned}
(ST)u_k&=S(T(u_k))\\
&=S(\sum^n_{r=1}B_{r,k}v_r)\\
&=\sum^n_{r=1} B_{r,k}(S_{v_r})\\
&=\sum^n_{r=1} B_{r,k}(\sum^j_{j=1}A_{j,r} w_j)\\
&=\sum^n_{r=1} (\sum^j_{j=1}A_{j,r}B_{r,k})w_j\\
&=\sum^n_{r=1} (M(ST)_{j,k})w_j\\
\end{aligned}
\begin{aligned}
(M(ST))_{j,k}&=\sum^n_{r=1}A_{j,r}B_{r,k}\\
&=(AB)_{j,k}
\end{aligned}
M(ST)=AB=M(S)M(T)
Notation 3.44
Suppose A is an m\times n matrix
then
A_{j,\cdot}denotes the1\times nmatrix at the $j$th column.A_{\cdot,k}denotes them\times 1matrix at the $k$th column.
Proposition 3.46
Suppose A is a m\times n matrix and B is a n\times p matrix, then
(AB)_{j,k}=(A_{j,\cdot})\cdot (B_{\cdot,k})
Proof:
(AB)_{j,k}=A_{j,1}B_{1,k}+...+A_{j,n}B_{n,k}
(A_{j,\cdot})\cdot (B_{\cdot,k})=(A_{j,\cdot})_{1,1}(B_{\cdot,k})_{1,1}+...+(A_{j,\cdot})_{1,n}(B_{\cdot,k})_{n,1}=A_{j,1}B_{1,k}+...+A_{j,n}B_{n,k}
Proposition 3.48
Suppose A is an m\times n matrix and B is an n\times p matrix, then
(A,B)_{\cdot,k}=A(B_{\cdot,k})
Proposition 3.56
Let A is an m\times n $b=\begin{pmatrix}
b_1\...\b_n
\end{pmatrix}$ a x\times 1 matrix. Then Ab=b_1A_{\cdot,1}+...+b_nA_{\cdot,n}
i.e. Ab is a linear combination of the columns of A
Proposition 3.51
Let C be a m\times c matrix and R be a c\times n matrix, then
-
column
kofCRis a linear combination of the columns ofCwith coefficients given byR_{\cdot,k}putting the propositions together...
-
row
jofCRis a linear combination of the rows ofRwith coefficients given byC_{j,\cdot}