3.0 KiB
Lecture 25
Chapter VI Inner Product Spaces
Inner Products and Norms 6A
Dot Product (Euclidean Inner Product)
v\cdot w=v_1w_1+...+v_n w_n
-\cdot -:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}
Some properties
v\cdot v\geq 0v\cdot v=0\iff v=0(u+v)\cdot w=u\cdot w+v\cdot w(c\cdot v)\cdot w=c\cdot(v\cdot w)
Definition 6.2
An inner product <,>:V\times V\to \mathbb{F}
Positivity: <v,v>\geq 0
Definiteness: <v,v>=0\iff v=0
Additivity: <u+v,w>=<u,w>+<v,w>
Homogeneity: <\lambda u, v>=\lambda<u,v>
Conjugate symmetry: <u,v>=\overline{<v,u>}
Note: the dot product on \mathbb{R}^n satisfies these properties
Example:
V=C^0([-1,-])
L_2 - inner product.
<f,g>=\int^1_{-1} f\cdot g
<f,f>=\int ^1_{-1}f^2\geq 0
<f+g,h>=<f,h>+<g,h>
<\lambda f,g>=\lambda<f,g>
<f,g>=\int^1_{-1} f\cdot g=\int^1_{-1} g\cdot f=<g,f>
The result is in real vector space so no conjugate...
Theorem 6.6
For <,> an inner product
(a) Fix V, then the map given by u\mapsto <u,v> is a linear map (Warning: if \mathbb{F}=\mathbb{C}, then u\mapsto<u,v> is not linear).
(b,c) <0,v>=<v,0>=0
(d) <u,v+w>=<u,v>+<u,w> (second terms are additive.)
(e) <u,\lambda v>=\bar{\lambda}<u,v>
Definition 6.4
An inner product space is a pair of vector space and inner product on it. (v,<,>). In practice, we will say "V is an inner product space" and treat V as the vector space.
For the remainder of the chapter. V,W are inner product vector spaces...
Definition 6.7
For v\in V the norm of $V$ is given by ||v||:=\sqrt{<v,v>}
Theorem 6.9
Suppose v\in V.
(a) ||v||=0\iff v=0
(b) ||\lambda v||=|\lambda|\ ||v||
Proof:
||\lambda v||^2=<\lambda v,\lambda v> =\lambda<v,\lambda v>=\lambda\bar{\lambda}<v,v>
So |\lambda|^2 <v,v>=|\lambda|^2||v||^2, ||\lambda v||=|\lambda|\ ||v||
Definition 6.10
v,u\in V are orthogonal if <v,u>=0.
Theorem 6.12 (Pythagorean Theorem)
If u,v\in V are orthogonal, then ||u+v||^2=||u||^2+||v||
Proof:
\begin{aligned}
||u+v||^2&=<u+v,u+v>\\
&=<u,u+v>+<v,u+v>\\
&=<u,u>+<u,v>+<v,u>+<v,v>\\
&=||u||^2+||v||^2
\end{aligned}
Theorem 6.13
Suppose u,v\in V, v\neq 0, set c=\frac{<u,v>}{||v||^2}, then let w=u-v\cdot v, then v and w are orthogonal.
Theorem 6.14 (Cauchy-Schwarz)
Let u,v\in V, then |<u,v>|\leq ||u||\ ||v|| where equality occurs only u,v are parallel...
Proof:
Take the square norm of u=\frac{<u,v>}{||u||^2}v+w.
Theorem 6.17 Triangle Inequality
If u,v\in V, then ||u+v||\leq ||u||+||v||
Proof:
\begin{aligned}
||u+v||^2&=<u+v,u+v>\\
&=<u,u>+<u,v>+<v,u>+<v,v>\\
&=||u||^2+||v||^2+2Re(<u,v>)\\
&\leq ||u||^2+||v||^2+2|<u,v>|\\
&\leq ||u||^2+||v||^2+2||u||\ ||v||\\
&\leq (||u||+||v ||)^2
\end{aligned}