4.0 KiB
Lecture 35
Chapter VIII Operators on complex vector spaces
Generalized Eigenvectors and Nilpotent Operators 8A
Recall: Definition 8.8
Suppose T\in \mathscr{L}(V) and \lambda is an eigenvalue of T. A vector v\in V is called a generalized eigenvector of T corresponding to \lambda if v\neq 0 and
(T-\lambda I)^k v=0
for some positive integer k.
Example:
For T\in\mathscr{L}(\mathbb{F})
The matrix for T is \begin{pmatrix} 0&1\\0&0 \end{pmatrix}
When \lambda=0, \begin{pmatrix} 1 & 0 \end{pmatrix} is an eigenvector \begin{pmatrix} 0&1 \end{pmatrix} is not and eigenvector but it is a generalized eigenvector.
In fact \begin{pmatrix} 0&1\\0&0 \end{pmatrix}^2=\begin{pmatrix} 0&0\\0&0 \end{pmatrix}, so any nonzero vector is a generalized eigenvector. is a generalized eigenvector of T corresponding to eigenvalue 0.
Fact: v\in V is a generalized eigenvector of T corresponding to \lambda\iff (T-\lambda I)^{dim\ V}v=0
Theorem 8.9
Suppose \mathbb{F}=\mathbb{C} and T\in \mathscr{L}(V) Then \exists basis of V consisting of generalized eigenvector of T.
Proof: Let n=dim\ V we will induct on n.
Base case n=1, Every nonzero vector in V is an eigenvector of T.
Inductive step: Let n=dim\ V, assume the theorem is tru for all vector spaces with dim<n.
Using Theorem 8.4 V=null(T-\lambda I)^n\oplus range(T-\lambda I)^n. If null(T-\lambda I)^n=V, then every nonzero vector is a generalized eigenvector of T
So we may assume null(T-\lambda I)^n\neq V, so range(T-\lambda I)^n\neq \{0\}.
Since \lambda is an eigenvalue of T, null(T-\lambda I)^n\neq \{0\}, range(T-\lambda I)^n\neq V.
Furthermore, $range(T-\lambda I)n is invariant under T by Theorem 5.18. (i.e v\in range\ (T-\lambda I)^n\implies Tv\in range\ (T-\lambda I)^n.)
Let S\in \mathscr{L}(range\ (T-\lambda I)^n), be the restriction of T to range\ (T-\lambda I)^n. By induction, \exists basis of range\ (T-\lambda I)^n consisting of generalized eigenvectors of S. These are also generalized eigenvectors of T. So we have
V=null\ (T-\lambda I)^n\oplus range\ (T-\lambda I)^n
which gives our desired basis for V.
Example:
T\in \mathscr{L}(\mathbb{C}^3) matrix is \begin{pmatrix}0&0&0\\4&0&0\\0&0&5\end{pmatrix} by lower triangular matrix, eigenvalues are 0,5.
The generalized eigenvector can be obtained \begin{pmatrix}0&0&0\\4&0&0\\0&0&5\end{pmatrix}^3=\begin{pmatrix}0&0&0\\0&0&0\\0&0&125\end{pmatrix}
So the generalized eigenvectors for eigenvalue 0 are (z_1,z_2,0),
So the standard basis for \mathbb{C}^3 consists of generalized eigenvectors of T.
Recall: If v is an eigenvector of T of eigenvalue \lambda and v is an eigenvector of T of eigenvalue \alpha, then \lambda=\alpha.
Proof:
Tv=\lambda v,Tv=\alpha v, then \lambda v=\alpha v,\lambda-\alpha=0
More generalized we have
Theorem 8.11
Each generalized eigenvectors of T corresponds to only one eigenvalue of T.
Proof:
Suppose v\in V is a generalized eigenvector of T corresponds to eigenvalues \lambda and \alpha.
Let n=dim\ V, we know (T-\lambda I)^n v=0,(T-\alpha I)^n v=0. Let m be the smallest positive integer such that (T-\alpha I)^m v=0 (so (T-\alpha I)^{m-1}v\neq 0).
Then, let A=\alpha I-\lambda I, B=T-\alpha I, and AB=BA
\begin{aligned}
0&=(T-\lambda I)^n v\\
&=(B+A)^n v\\
&=\sum^n_{k=0} \begin{pmatrix}
n\\k
\end{pmatrix} A^{n-k}B^kv
\end{aligned}
Then we apply (T-\alpha I)^{m-1}, which is B^{m-1} to both sides
\begin{aligned}
0&=A^nB^{m-1}v
\end{aligned}
Since (T-\alpha I)^{m-1}\neq 0, A=0, then \alpha I-\lambda I=0, \alpha=\lambda