3.9 KiB
Lecture 4
Office hour after lecture: Cupules I 109
Chapter II Finite Dimensional Subspaces
Span and Linear Independence 2A
Definition 2.2
Linear combination
Given a list (a finite list), of \mathbb{F} vectors \vec{v_1},...,\vec{v_m}. A linear combination of \vec{v_1},...,\vec{v_m} is a vector \vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m},a_i\in \mathbb{F} (Adding vectors with different weights)
Definition 2.4
Span
The set of all linear combinations of \vec{v_1},...,\vec{v_m} is called the span of \{\vec{v_1},...,\vec{v_m}\}
Span \{\vec{v_1},...,\vec{v_m}\}=\{\vec{v}\in V, \vec{v}=a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}
Note: When there is a nonzero vector in \{\vec{v_1},...,\vec{v_m}\}, the span is a infinite set.
Example:
Consider V=\mathbb{R}^3, find the span of the vector \{(1,2,3),(1,1,1)\},
The span is \{a_1\cdot (1,2,3),a_2\cdot (1,1,1):a_1,a_2\in \mathbb{R}\}=\{(a_1+a_2,2a_1+a_2,3a_1+a_2):a_1,a_2\in \mathbb{R}\}
(-1,0,1)\in Span((1,2,3),(1,1,1))
(1,0,1)\cancel{\in} Span((1,2,3),(1,1,1))
Theorem 2.6
The span of a list of vectors in V is the smallest subspace of V containing this list.
Proof:
-
Span is a subspace
Span\{\vec{v_1},...,\vec{v_m}\}=\{a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\textup{ for some }a_i\in \mathbb{F}\}- The zero vecor is inside the span by letting all the
a_i=0 - Closure under addition:
a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}+b_1\vec{v_1}+b_2\vec{v_2}+...+b_m\vec{v_m}=(a_1+b_1)\vec{v_1}+(a_2+b_2)\vec{v_2}+...+(a_m+b_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\} - Closure under multiplication:
c(a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m})=(ca_1)\vec{v_1}+(ca_2)\vec{v_2}+...+(ca_m)\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}
- The zero vecor is inside the span by letting all the
-
Span is the smallest subspace containing the given list.
For each
i\in\{1,...,m\},\vec{v_i}=0\vec{v_1}+...+0\vec{v_{i-1}}+\vec{v_i}+0\vec{v_{i+1}}+...+0\vec{v_m}\in Span\{\vec{v_1},...,\vec{v_m}\}If
Wis a subspace ofVcontainingSpan\{\vec{v_1},...,\vec{v_m}\}, thenWis closed under addition and scalar multiplication.Thus for any
a_1,...,a_m\in \mathbb{F},a_1\vec{v_1}+a_2\vec{v_2}+...+a_m\vec{v_m}\in W. SoSpan\{\vec{v_1},...,\vec{v_m}\}\subset W
Definition 2.ex.1
Spanning set
If a vector space V=Span\{\vec{v_1},...,\vec{v_m}\}, then we say \{\vec{v_1},...,\vec{v_m}\} spans V, which is the spanning set of V.
A vector space is called finite dimensional if it spanned by a finite list.
Example:
\mathbb{F}^n is finite dimensional
\mathbb{R}=Span\{(1,0,0),(0,1,0),(0,0,1)\}
(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)
Definition
Polynomial
A polynomial is a function p:\mathbb{F}\to \mathbb{F} such that p(Z)=\sum_{i=0}^{m} a_i z^i,a_i\in \mathbb{F}
Let \mathbb{P}(\mathbb{F}) be the set of polynomials over \mathbb{F}, then \mathbb{P}(\mathbb{F}) has the structure of a vector space.
If we consider the degree of polynomials, then f=a_1f_1+...+a_mf_m, with degree f\leq max\{deg(f_1,...,f_m)\}
\mathbb{P}(\mathbb{F}) is a infinite dimensional vector space.
Let \mathbb{P}_m(\mathbb{F}) be the set of polynomials of degree at mote m, then \mathbb{P}_m(\mathbb{F}) is a finite dimensional vectro space.
\mathbb{P}_m(\mathbb{F})=Span\{1,z,z^2,...z^m\}
Linear independence
How to find a "good" spaning set for a finite dimensional vector space.
Example:
V=\mathbb{R^2}
\mathbb{R^2}=Span\{(1,0),(0,1)\}
\mathbb{R^2}=Span\{(1,0),(0,1),(0,0),(1,1)\}
\mathbb{R^2}=Span\{(1,2),(3,1),(4,25)\}
Definition 2.15
A list of vector \vec{v_1},...,\vec{v_m} in V is called linearly independent if the only choice for a_1,...,a_m\in \mathbb{F} such that a_1\vec{v_1}+...+a_m\vec{v_m}=\vec{0} is a_1=...=a_m=0
If not, then there must \exists\vec{v_i} that can be expressed by other vectors in the set.