2.5 KiB
Lecture 8
Chapter III Linear maps
Assumption: U,V,W are vector spaces (over \mathbb{F})
Vector Space of Linear Maps 3A
Definition 3.1
A linear map from V to W is a function from T:V\to W with the following properties:
- Additivity:
T(u+v)=T(u)+T(v),\forall u,v\in V - Homogeneity:
T(\lambda v)=\lambda T(v),\forall \lambda \in \mathbb{F},v\in V
Notation
Tv=T(v)\mathscr{L}(V,W)denotes the set of linear maps fromVtoW. (homomorphism,Hom(V,W))\mathscr{L}(V)denotes the set of linear maps fromVtoV. (endomorphism,End(V))
Example
- zero map
0(v)\in \mathscr{L}(V,W)0(v)=0 - identity map
I\in \mathscr{L}(V,W),I(v)=v - scaling map
T\in \mathscr{L}(V,W),T(v)=av,a\in \mathbb{F} - differentiation map
D\in \mathscr{L}(\mathscr{P}_m(\mathbb{F}),\mathscr{P}_{m-1}(\mathbb{F})),D(f)=f'
Lemma 3.10
T0=0 for T\in \mathscr{L}(V,W)
Proof:
T(0+0)=T(0)+T(0)
Theorem 3.4 Linear map lemma
Suppose v_1,...,v_n is a basis for V, and suppose w_1,...,w_n\in W are arbitrary vector. Then, there exists a unique linear map. T:V\to W such that T_{v_i}=w_i for i=1,...,n
Proof:
First we show existence.
by constrains,
T(c_1 v_1,...+c_n v_n)=c_1w_1+...+c_n w_n
T is well defined because v_1,....v_n are a basis.
Need to show that T is a linear map.
- Additivity: let
u,v\in Vand supposea_1,...,a_n,b_1,...,b_n\in \mathbb{F}withu=a_1v_1+....+a_n v_n ,v=b_1v_1+...+b_2v_n, thenT(u+v)=T((a_1+b_1)v_1+...+(a_n+b_n)v_n)=Tu+Tv
Proof for homogeneity used for exercise.
Need to show T is unique. Let S\in\mathscr{L}(V,W) such that Sv_i=w_i,i=1,...,n
S(c_1 v_1+...+c_n v_n)=S(c_1v_1)+S(...)+S(c_n v_n)=c_1S(v_1)+...+c_nS(v_n)
+c_1w_1+...+c_nw_n
Then S=T
Definition 3.5
Let S,T\in \mathscr{L}(V,W), then define
(S+T)\in\mathscr{L}(V,W)by(S+T)(v)=Sv+Tv- for
\lambda \in \mathbb{F},(\lambda T)\in \mathscr{L}(V,W),(\lambda T)(v)=\lambda T(v)
Exercises: Show that S+T and \lambda T are linear maps.
Theorem 3.6
\mathscr{L}(V,W) is a vector space.
Sketch of proof:
- additive identity:
0(v)=0 - associativity:
- commutativity:
- additive inverse:
T\to (-1)T=-T - scalar multiplication
1T=T - distributive
Definition 3.7
Multiplication for linear map: (ST)v=S(T(v))=(S\circ T)(v) Not commutative but associative.