Files
NoteNextra-origin/pages/Math4111/Math4111_L2.md
2024-11-17 22:05:00 -06:00

106 lines
3.4 KiB
Markdown

# Lecture 2
Ordered sets, least upper bounds and fields.
## Warm up
(a) The statements says: $\forall a\in A, \exists s\in a$ such that $s\geq 7$.
The negation is $\exist a\in A,\forall s\in a$, such that $s<7$.
## Ordered sets
Let $S$ be a set. An order on $S$ is a relation satisfying:
1. "trichotomy". If $x,y\in S$, then exactly on eof the these statements are hold: $x<y,x=y,x>y$.
2. "transitivity". If $x,y,z\in S$, then $x<y,y\implies x<z$.
An ordered set is a set with order.
### Definition 1.7
Let $S$ be an ordered set and let $E\subset S$ ($E$ is the "universe", all the element you can ever think of...)
1. $\beta\in S$ is an upper bound of $E$ if $\forall x\in E,x\leq \beta$
2. $E$ is bounded above if $\exist \beta \in S$ such that $\beta$ is the upper bound of $E$.
#### Example
1. $S=\mathbb{Q}, E=\{1,2,3\}$ ($E$ is bounded above)
* 3,4,3.5 are all upper bounds of $E$.
* 2,2.5 is not upper bounds of $E$.
* $\pi$ is not upper bound of $S$ since $\pi\notin S$
2. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x<1\}$ ($E$ is bounded above)
* The upper bound is $1$.
3. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x\}$ ($E$ is not bounded above)
* Sad
4. $S=\mathbb{Q}, E=\phi$.
* $\beta\in S$ is an upper bound of $E$ if $\forall x\in E,x\leq \beta\equiv\beta\in S$ is not an upper bound of $E$ if $\exists x\in E,x> \beta$
* So this statement is true for any rational numbers since $\cancel{\exist} a\in E$ such that $x>\beta$.
### Definition 1.8
Least upper bound, LUB, supremum, SUP
Let $S$ be an ordered set and $E\subset S$. We say $\alpha\in S$ is the LUB of $E$ if
1. $\alpha$ is the UB of $E$. ($\forall x\in E,x\leq \alpha$)
2. if $\gamma<\alpha$, then $\gamma$ is not UB of $E$. ($\forall \gamma <\alpha, \exist x\in E$ such that $x>\gamma$ )
#### Lemma
Uniqueness of upper bounds.
If $\alpha$ and $\beta$ are LUBs of $E$, then $\alpha=\beta$.
Proof:
Suppose for contradiction $\alpha$ and $\beta$ are both LUB of $E$, then $\alpha\neq\beta$
WLOG $\alpha>\beta$ and $\beta>\alpha$.
EOP
We write $SupE$ to denote the LUB of $E$.
This also applies to $GLB$ (greatest lower bound) and infinum of $E$
#### Example
1. $S=\mathbb{Q}, E=\{1,2,3\}$ ($E$ is bounded above)
* $SupE=3$, $Inf E=1$
2. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x<1\}$ ($E$ is bounded above)
* $SupE=3$, $Inf E=1$
$SupE$ and $Inf E=1$ don't have to $\in E$
3. $S=\mathbb{Q}, E=\{x\in \mathbb{Q}:0<x\}$ ($E$ is not bounded above)
* $SupE=\infty$ or not defined, $Inf E=0$
4. $S=\mathbb{Q}, E=\phi$.
* $SupE=-\infty$ or not defined, $Inf E=\infty$ or not defined, we don't put $\infty$ in $\mathbb{Q}$
Important example
5. $S=\mathbb{Q}, A=\{p\leq \mathbb{Q}:p>0, p^2<2\}$.
* $A$ is not empty and bounded above. However, $Sup A$ des not exists.
If $S=\mathbb{R}, A=\{p\leq \mathbb{Q}:p>0, p^2<2\}$.
* $A$ is not empty and bounded above. However, $Sup A=\sqrt{2}$.
#### Least upper bound property (LUBP)
if $\forall E\subset S$ that tis non-empty and bounded above, $\exist Sup E\in S$.
#### Greatest upper bound property (GLBP)
S has greatest lower bound property (GLBP) if $\exist E\subset S$ that is non-empty and bounded below, $\exists Inf E\in S$
$\mathbb{Q}$ does not have LUBP and GLBP.
#### Theorem 1.11
Let $S$ be an ordered set. Then $S$ has the LUBP $\iff$ $S$ has the GLBP
Proof:
Let $S$ be a set with LUBP. (we want to show $S$ has GLBP)