139 lines
3.0 KiB
Markdown
139 lines
3.0 KiB
Markdown
# Math 4121 Lecture 2
|
|
|
|
## Chapter 5: Differentiation
|
|
|
|
### Continue on Differentiation
|
|
|
|
#### Theorem 5.5: Chain Rule
|
|
|
|
Suppose
|
|
|
|
1. $f:[a,b]\to \mathbb{R}$ is continuous on $[a,b]$ (or some neighborhood of $x$)
|
|
2. $f'(x)$ exists at some point $x\in (a,b)$ ($f$ is differentiable at $x$)
|
|
3. $g$ is defined on an interval $[c,d]$ containing the range of $f$, ($f([a,b])\subset [c,d]$)
|
|
4. $g$ is differentiable at the point $f(x)$
|
|
|
|
Let $h=g\circ f$ ($h=g(f(x))$) where $f$ is differentiable at $x$ and $g$ is differentiable at $f(x)$. Then $h$ is differentiable at $x$ and
|
|
|
|
$$
|
|
h'(x) = g'(f(x))f'(x)
|
|
$$
|
|
|
|
Proof:
|
|
|
|
Let $y=f(x)$ and $u(t)=\frac{f(t)-f(x)}{t-x}-f'(x)$ for $t\neq x,t\in [a,b]$, $v(s)=\frac{g(s)-g(y)}{s-y}-g'(y)$ for $s\neq y,s\in [c,d]$.
|
|
|
|
Notice that $u(t)\to 0$ as $t\to x$ and $v(s)\to 0$ as $s\to y$.
|
|
|
|
Pick $s=f(t)$ for $t\in [a,b]$ so that $s\to y$ as $t\to x$. Then
|
|
|
|
$$
|
|
\begin{aligned}
|
|
h(t)-h(x) &= g(f(t))-g(f(x)) \\
|
|
&= g(t)-g(y) \\
|
|
&= (s-y)(g'(y)+v(s)) \\
|
|
&= (f(t)-f(x))(g'(y)+v(s)) \\
|
|
&= (t-x)(f'(x)+u(t))(g'(y)+v(s)) \\
|
|
\end{aligned}
|
|
$$
|
|
|
|
So $h'(x)=\frac{h(t)-h(x)}{t-x}=(f'(x)+u(t))(g'(y)+v(s))$. Since $u(t)\to 0$ and $v(s)\to 0$ as $t\to x$ and $s\to y$, we have $h'(x)=g'(y)f'(x)$.
|
|
|
|
QED
|
|
|
|
#### Example 5.6
|
|
|
|
(a) Let $f(x)=\begin{cases}
|
|
x\sin\frac{1}{x} & x\neq 0 \\
|
|
0 & x=0
|
|
\end{cases}$
|
|
|
|
For $x\neq 0$,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
f'(x) &= 1\cdot\sin\frac{1}{x}+x\cos\frac{1}{x}\cdot\frac{-1}{x^2} \\
|
|
&= \sin\frac{1}{x}-\frac{\cos\frac{1}{x}}{x}
|
|
\end{aligned}
|
|
$$
|
|
|
|
For $x=0$,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
f'(0) &= \lim_{x\to 0}\frac{f(x)-f(0)}{x-0} \\
|
|
&= \lim_{x\to 0}\frac{x\sin\frac{1}{x}}{x} \\
|
|
&= \lim_{x\to 0}\sin\frac{1}{x}
|
|
\end{aligned}
|
|
$$
|
|
|
|
This limit does not exist, so $f$ is not differentiable at $x=0$.
|
|
|
|
(b) Let $f(x)=\begin{cases}
|
|
x^2 \sin\frac{1}{x} & x\neq 0 \\
|
|
0 & x=0
|
|
\end{cases}$
|
|
|
|
For $x\neq 0$,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
f'(x) &= 2x\sin\frac{1}{x}+x^2\cos\frac{1}{x}\cdot\frac{-1}{x^2} \\
|
|
&= 2x\sin\frac{1}{x}-\cos\frac{1}{x}
|
|
\end{aligned}
|
|
$$
|
|
|
|
For $x=0$,
|
|
|
|
$$
|
|
\begin{aligned}
|
|
f'(0) &= \lim_{x\to 0}\frac{f(x)-f(0)}{x-0} \\
|
|
&= \lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x} \\
|
|
&= \lim_{x\to 0}x\sin\frac{1}{x}\\
|
|
&= 0
|
|
\end{aligned}
|
|
$$
|
|
|
|
So $f'(x)=\begin{cases}
|
|
2x\sin\frac{1}{x}-\cos\frac{1}{x} & x\neq 0 \\
|
|
0 & x=0
|
|
\end{cases}$.
|
|
|
|
Notice that $f'(x)$ is not continuous at $x=0$ since $\lim_{x\to 0}f'(x)$ is undefined.
|
|
|
|
### Mean Value Theorem
|
|
|
|
#### Definition 5.7: Local Extrema
|
|
|
|
Let $f:[a,b]\to \mathbb{R}$. We say that $f$ has a local maximum (or minimum) at $x\in [a,b]$ if there exists some $\delta>0$ such that
|
|
|
|
$$
|
|
f(x)\geq f(t) \text{ for all }|x-t|<\delta
|
|
$$
|
|
|
|
for local maximum, and
|
|
|
|
$$
|
|
f(x)\leq f(t) \text{ for all }|x-t|<\delta
|
|
$$
|
|
|
|
for local minimum.
|
|
|
|
#### Theorem 5.8
|
|
|
|
If $f:[a,b]\to \mathbb{R}$ has a local maximum (or minimum) at $x\in (a,b)$ and $f$ is differentiable at $x$, then $f'(x)=0$.
|
|
|
|
Proof:
|
|
|
|
We can find $\delta>0$ such that $a<x-\delta<x<x+\delta<b$.
|
|
|
|
And for all $x-\delta<t<x+\delta$,
|
|
|
|
If $x-\delta<t<x$, then $f(x)\geq f(t)$ so $\frac{f(t)-f(x)}{t-x}\leq 0$.
|
|
|
|
If $x<t<x+\delta$, then $f(x)\geq f(t)$ so $\frac{f(t)-f(x)}{t-x}\geq 0$.
|
|
|
|
So $\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=0$.
|
|
|
|
QED
|