Files
NoteNextra-origin/pages/CSE442T/CSE442T_L1.md
2024-11-18 14:07:36 -06:00

125 lines
2.8 KiB
Markdown

# Lecture 1
> I changed all the element in set to lowercase letters. I don't know why K is capitalized.
Brian Garnett
bcgarnett@wustl.edu
Math Phd... Great!
Proof based course and write proofs.
CSE 433 for practical applications.
OH: Right after class! 4-5 Mon, Urbaur Hall 227
Pass and Shalat
## Alice sending information to Bob
Assuming _Eve_ can always listen
Rule 1. Message, Encryption to Code and Decryption to original Message.
## Kerckhoffs' principle
It states that the security of a cryptographic system shouldn't rely on the secrecy of the algorithm (Assuming Eve knows how everything works.)
**Security is due to the security of the key.**
## Private key encryption scheme
Let $\mathcal{M}$ be the set of message that Alice will send to Bob. (The message space) "plaintext"
Let $\mathcal{K}$ be the set of key that will ever be used. (The key space)
$Gen$ be the key generation algorithm.
$k\gets Gen(\mathcal{K})$
$c\gets Enc_k(m)$ denotes cipher encryption.
$m'\gets Dec_k(c')$ $m'$ might be null for incorrect $c'$.
$Pr[K\gets \mathcal{K}:Dec_k(Enc_k(M))=m]=1$ The probability of decryption of encrypted message is original message is 1.
*_in some cases we can allow the probailty not be 1_
## Some examples of crypto system
Let $\mathcal{M}=$ {all five letter strings}.
And $\mathcal{K}=$ {1-$10^{10}$}
Example:
$P[k=k']=\frac{1}{10^{10}}$
$Enc_{1234567890}("brion")="brion1234567890"$
$Dec_{1234567890}(brion1234567890)="brion"$
Seems not very secure but valid crypto system.
## Early attempts for crypto system.
### Caesar cipher
$\mathcal{M}=$ finite string of texts
$\mathcal{K}=$ {1-26}
$Enc_k=[(i+K)\% 26\ for\ i \in m]=c$
$Dec_k=[(i+26-K)\% 26\ for\ i \in c]$
```python
def caesar_cipher_enc(s: str, k:int):
return ''.join([chr((ord(i)-ord('a')+k)%26+ord('a')) for i in s])
def caesar_cipher_dec(s: str, k:int):
return ''.join([chr((ord(i)-ord('a')+26-k)%26+ord('a')) for i in s])
```
### Substitution cipher
$\mathcal{M}=$ finite string of texts
$\mathcal{K}=$ bijective linear transformations (for English alphabet, $|\mathcal{K}|=26!$)
$Enc_k=[iK\ for\ i \in m]=c$
$Dec_k=[iK^{-1}\ for\ i \in c]$
Fails to frequency analysis
### Vigenere Cipher
$\mathcal{M}=$ finite string of texts
$\mathcal{K}=$ key phrase of a fixed length
```python
def viginere_cipher_enc(s: str, k: List[int]):
res=''
n,m=len(s),len(k)
j=0
for i in s:
res+=caesar_cipher_enc(i,k[j])
j=(j+1)%m
return res
def viginere_cipher_dec(s: str, k: List[int]):
res=''
n,m=len(s),len(k)
j=0
for i in s:
res+=caesar_cipher_dec(i,k[j])
j=(j+1)%m
return res
```
### One time pad
Completely random string, sufficiently long.