Files
NoteNextra-origin/content/CSE5313/CSE5313_L3.md
Zheyuan Wu 1d6890db81 update
2025-09-02 12:53:45 -05:00

308 lines
8.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# CSE5313 Coding and information theory for data science (Lecture 3)
Finite Fields
## Why finite fields?
Most information systems are discrete.
- Use bits, byte etc.
Use bits/bytes to represent real numbers.
- Problems of overflow, accuracy, etc.
We wish to build "good" codes $\mathcal{C} \subset \mathbb{F}^n$:
- Large $\frac{k}{n}$
- Lage $d_H(\mathcal{C})\implies$ error detection/correction, erasure correction.
Idea: Use linear algebraic operations to encode/decode.
- $F=\mathbb{F}_q$, a finite field with $q$ elements.
## Finite fields
### Fields and field axioms
A field is a set $\mathbb{F}$ with two operations $+$ and $\cdot$ that satisfy the following axioms:
- Associativity: $(a+b)+c = a+(b+c)$ and $(a\cdot b)\cdot c = a\cdot (b\cdot c)$
- Commutativity: $a+b = b+a$ and $a\cdot b = b\cdot a$
- Distributivity: $a\cdot (b+c) = a\cdot b + a\cdot c$
- Existence of Identity elements: $a+0 = a$ and $a\cdot 1 = a$
- Existence of Inverse elements: $a+(-a) = 0$ and $a\cdot a^{-1} = 1$
Every set of elements which satisfies these axioms is a field.
We can "do algebra" over it (matrices, vector spaces, etc.).
Are there finite sets which satisfy the field axioms?
What are the possible sizes of such sets?
### Background Basic number theory
- For $a, b \in \mathbb{N}$,
- Greatest Common Denominator: $\gcd(a, b) =$ the largest integer $m$ such that $m|a$ and $m|b$.
- Lowest Common Multiplier: $\operatorname{lcm}(a, b) =$ the smallest integer $m$ such that $a|m$ and $b|m$.
- $a, b$ are coprime if $\gcd(a, b) = 1$.
- Fact: (Euclids lemma) Say $a \geq b$,
- There exists a quotient $q \geq 0$ and a remainder $0 \leq r < b$ such that $a = bq + r$.
- Theorem (Euclid): If $\gcd(a, b) = 1$ then there exist $m, n \in \mathbb{Z}$ such that $am + bn = 1$.
- Proof by repeated application of Euclids lemma.
- Example:
- If $a = 3, b = 8$,
- then $m = -5, n = 2$,
- satisfy $3 \cdot -5 + 8 \cdot 2 = 1$.
### Modular arithmetic
Defined a set with addition $\oplus$ and multiplication $\odot$ that satisfy the field axioms.
$\mathbb{Z}_p$ is a field if $p$ is a prime number.
- Addition and multiplication are defined modulo $p$.
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (a\cdot b) \mod p$
- $0$ is the additive identity.
- $1$ is the multiplicative identity.
- $a$ has an additive inverse $p-a$.
- $a$ has a multiplicative inverse $a^{-1}$ such that $a \odot a^{-1} = 1$.
Proof for existence of multiplicative inverse for $a\in \mathbb{Z}_p\setminus \{0\}$:
<details>
<summary>Proof</summary>
Since $p$ is prime, $\gcd(a, p) = 1$.
By euclid's theorem, there exist $m, n \in \mathbb{Z}$ such that $am + pn = 1$.
Take mod $p$ on both sides:
$$
a_{\mod p}\odot m_{\mod p} \equiv 1_{\mod p}
$$
Thus, $m_{\mod p}$ is the multiplicative inverse of $a_{\mod p}$.
</details>
Polynomials over prime fields is also a field.
$(\mathbb{Z}_2,\operatorname{XOR},\operatorname{AND})$ is a field.
### Polynomials over finite fields
A polynomial over a field $\mathbb{Z}_p$ is a expression of the form:
$$
a(x)=\sum_{i=0}^n a_i x^i
$$
- Polynomial degree: largest index of a non-zero coefficient.
- Polynomial addition: $a(x) \oplus b(x) = \sum_{i=0}^n (a_i \oplus b_i) x^i$
- Polynomial multiplication: $a(x)\odot b(x) = \sum_{i=0}^n \sum_{j=0}^n a_i \odot b_j x^{i+j}$
- Polynomial equality: $a(x) = b(x)$ if and only if $a_i = b_i$ for all $i$.
- Polynomial division: suppose $\deg(a(x)) \geq \deg(b(x))$, then there exist unique polynomials $q(x)$ and $r(x)$ such that $a(x) = b(x)q(x) \oplus r(x)$ and $\deg(r(x)) < \deg(b(x))$. (do long division for polynomials)
denoted as $\mathbb{Z}_p[x]$.
<details>
<summary>Example</summary>
$$
p(x) = x^2 + 6x+3\in \mathbb{Z}_7[x]
$$
$p(1) = 1^2 + 6\cdot 1 + 3 = 10 \equiv 3 \mod 7$
$p(2) = 2^2 + 6\cdot 2 + 3 = 4+5+3 = 12 \equiv 5 \mod 7$
</details>
#### Irreducible polynomials
A polynomial $p(x)$ is irreducible if it cannot be factored into two non-constant polynomials.
If $\gcd(a(x),b(x))=1$, then there exist $m(x),n(x)\in \mathbb{Z}_p[x]$ such that $a(x)m(x)\oplus b(x)n(x)=1$.
Proved similar to euclid's theorem.
> [!TIP]
>
> If a polynomial $p(x)$ has a root, say $r$, then $p(x) = (x-r)q(x)$ for some $q(x)\in \mathbb{Z}_p[x]$.
Example in $\mathbb{Z}_2[x]$:
$$
p(x) = x^2 \oplus 1
$$
is reducible because $p(x) = (x\oplus 1)(x\oplus 1)$.
$$
p(x) = x^3 \oplus x \oplus 1
$$
is irreducible.
<details>
<summary>Proof</summary>
We prove by contradiction.
Suppose $p(x)$ is reducible, then $p(x) = a(x)b(x)$ for some $a(x),b(x)\in \mathbb{Z}_2[x]$.
Then $\deg(p(x)) = \deg(a(x)) + \deg(b(x))$.
Let $\deg b(x)=1$, then $b(x) \in \{x, x\oplus 1\}$.
If $b(x) = x$, then $p(0)=0$ but $p(x)$ is $1$.
If $b(x) = x\oplus 1$, then $p(1)=0$ but $p(x)$ is $1$.
</details>
It is not the case in $\mathbb{Z}_2[x]$, that every polynomial with no root is irreducible. (e.g consider $(x^3\oplus x\oplus 1)^2$ has no root but is reducible.)
#### Polynomial modular arithmetic
There exist quotient $q(x)$ and remainder $r(x)$, $\deg(r(x)) < \deg(b(x))$ such that
$$
a(x) = b(x)q(x) + r(x)
$$
$$
\implies a(x) \mod b(x) = r(x)
$$
"$\mod b(x)$" is an operation on polynomials in $\mathbb{Z}_p[x]$ that:
- Preserves polynomial addition:
- $a(x) \oplus c(x) \mod b(x) = a(x) \mod b(x) \oplus c(x) \mod b(x)$
- Preserves polynomial multiplication:
- $a(x) \odot c(x) \mod b(x) = a(x) \mod b(x) \odot c(x) \mod b(x)$
### Extension fields
Let $p$ be a prime number. then $(\mathbb{Z}_p[x], \oplus, \odot)$ is a field.
Fix a polynomial $f(x)\in \mathbb{Z}_p[x]$ of degree $t$.
Define a set
Elements: polynomials of degree at most $t-1$ in $\mathbb{Z}_p[x]$. (finite set, size is $p^t$.)
Define addition:
$$
a(x) \oplus_f b(x) = (a(x) \oplus b(x)) \mod f(x)
$$
Define multiplication:
$$
a(x) \odot_f b(x) = (a(x) \odot b(x)) \mod f(x)
$$
Denote this set as $\mathbb{Z}_p[x] \mod f(x)$.
This is not a field because it does not have a multiplicative inverse for every element.
<details>
<summary>Proof</summary>
We prove by contradiction.
Suppose there exists a polynomial $g(x)\in \mathbb{Z}_p[x] \mod f(x)$ such that $a(x) \odot_f g(x) = 1$.
Let $p=2,f(x)=x^2\oplus 1$.
The polynomials in $\mathbb{Z}_2[x] \mod f(x)$ are $\{0, 1, x, x\oplus 1\}$.
Consider the modular inverse of $(x\oplus 1)$.
- $0\odot_f (x\oplus 1) = 0$
- $1\odot_f (x\oplus 1) = x\oplus 1$
- $x\odot_f (x\oplus 1) = (x^2\oplus x)\mod (x^2\oplus 1) = x\oplus 1$
- $(x\oplus 1)\odot_f (x\oplus 1) = (x^2\oplus 1)\mod (x^2\oplus 1) = 0$
</details>
To make our field extension works, we need to find a polynomial $f(x)$ that is irreducible.
Theorem: If $f(x)$ is irreducible over $\mathbb{Z}_p$, then $\mathbb{Z}_p[x] \mod f(x)$ is a field.
<details>
<summary>Proof</summary>
Let $a(x)\in \mathbb{Z}_p[x] \mod f(x)$, $a(x)\neq 0$.
Existence of $a(x)^{-1}$ in $\mathbb{Z}_p[x] \mod f(x)$ can be done by Euclid's Theorem.
Since $\gcd(a(x),f(x))=1$, there exist $m(x),n(x)\in \mathbb{Z}_p[x]$ such that $a(x)m(x)\oplus f(x)n(x)=1$.
Take mod $f(x)$ on both sides:
$$
a(x)m(x) \mod f(x) = 1 \mod f(x)
$$
Thus, $m(x) \mod f(x)$ is the multiplicative inverse of $a(x) \mod f(x)$.
So $a(x)^{-1} = m(x) \mod f(x)$.
</details>
Corollary:
We can extend a prime field $\mathbb{Z}_p$ with irreducible polynomial
Intuitively, we add to $\mathbb{Z}_p$ a new element $x$ that satisfies $f(x)=0$.
Observation: We only used the general field properties of $\mathbb{Z}_p$. ⇒ any “base field” can be used instead of $\mathbb{Z}_p$. ⇒ Any field can be “extended”.
Say we wish to build a field $F$ with $2^8$ elements.
- Option 1:
- Take $\mathbb{Z}_2$ and $f(x)$ irreducible of degree 8.
- $F = \mathbb{Z}_2[x] \mod f(x)$.
- Option 2:
- Take $\mathbb{Z}_2$, and $g_1(x) \in \mathbb{Z}_2[x]$ irreducible of degree 4,
- $F_1 = \mathbb{Z}_2[x] \mod g_1(x)$. Note $|F_1| = 2^4 = 16$.
- Take $g_2(x) \in F_1[x]$ irreducible of degree 2.
- $F_2 = F_1[x] \mod g_2(x)$.
#### Uniqueness of the finite field
Theorems:
- As long as it is irreducible, the choice of $f(x)$ does not matter.
- If $f_1(x), f_2(x)$ are irreducible of the same degree, then $\mathbb{Z}_p[x] \mod f_1(x) \cong \mathbb{Z}_p[x] \mod f_2(x)$.
- Over every $\mathbb{Z}_p$ (𝑝 prime), there exists an irreducible polynomial of every degree.
- All finite fields of the same size are isomorphic.
- All finite fields are of size $p^d$ for prime $p$ and integer $d$.
Corollary: This is effectively the **only** way to construct finite fields!
#### Extension of fields
$\mathbb{R}[x]\mod (x^2+1)$ is a field, $\cong \mathbb{C}$.
|Terms | Finite field extension $F_1\to F_2$ | $\mathbb{R}\to \mathbb{C}$ |
|---|---|---|
|Base field| any field $\mathbb{F}_1$ | $\mathbb{R}$ |
|Irreducible polynomial| $f(x)$ | $x^2+1$ |
|New elements added| $x$ | $i$ |
| Add/mul| $\mod f(x)$ | $\mod (x^2+1)$ |
You cannot do algebraic extension of $\mathbb{Q}$ to $\mathbb{R}$.
Transcendental extension: