Files
NoteNextra-origin/content/CSE442T/CSE442T_L10.md
2025-07-06 12:40:25 -05:00

5.1 KiB

Lecture 10

Chapter 2: Computational Hardness

Discrete Log Assumption (Assumption 52.2)

This is collection of one-way functions


p\gets \tilde\Pi_n(\textup{ safe primes }), p=2q+1

a\gets \mathbb{Z}*_{p};g=a^2(\textup{ make sure }g\neq 1)

f_{g,p}(x)=g^x\mod p

f:\mathbb{Z}_q\to \mathbb{Z}^*_p

Evidence for Discrete Log Assumption

Best known algorithm to always solve discrete log mod p, p\in \Pi_n


O(2^{\sqrt{2}\sqrt{\log(n)}})

RSA Assumption

Let e be the exponents


P[p,q\gets \Pi_n;N\gets p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;y\gets \mathbb{N}_n;x\gets \mathcal{A}(N,e,y);x^e=y\mod N]<\epsilon(n)

Theorem 53.2 (RSA Algorithm)

This is a collection of one-way functions

I=\{(N,e):N=p\cdot q,p,q\in \Pi_n \textup{ and } e\in \mathbb{Z}_{\phi(N)}^*\}

D_{(N,e)}=\mathbb{Z}_N^*

R_{(N,e)}=\mathbb{Z}_N^*

f_{(N,e)}(x)=x^e\mod N

Example:

On encryption side

p=5,q=11,N=5\times 11=55, \phi(N)=4*10=40

pick e\in \mathbb{Z}_{40}^*. say e=3, and f(x)=x^3\mod 55

pick y\in \mathbb{Z}_{55}^*. say y=17. We have (55,3,17)

x^{40}\equiv 1\mod 55

x^{41}\equiv x\mod 55

x^{40k+1}\equiv x \mod 55

Since x^a\equiv x^{a\mod 40}\mod 55 (by corollary of Fermat's little Theorem: a^x\mod N=a^{x\mod \Phi(N)}\mod N s )

The problem is, what can we multiply by 3 to get 1\mod \phi(N)=1\mod 40.

by computing the multiplicative inverse using extended Euclidean algorithm we have 3\cdot 27\equiv 1\mod 40.

x^3\equiv 17\mod 55

x\equiv 17^{27}\mod 55

On adversary side.

they don't know \phi(N)=40


f(N,e):\mathbb{Z}_N^*\to \mathbb{Z}_N^*

is a bijection.

Proof: Suppose x_1^e\equiv x_2^e\mod n

Then let d=e^{-1}\mod \phi(N) (exists b/c e\in\phi(N)^*)

So (x_1^e)^d\equiv (x_2^e)^d\mod N

So x_1^{e\cdot d\mod \phi(N)}\equiv x_2^{e\cdot d\mod \phi(N)}\mod N (Euler's Theorem)

x_1\equiv x_2\mod N

So it's one-to-one.

QED

Let y\in \mathbb{Z}_N^*, letting x=y^d\mod N, where d\equiv e^{-1}\mod \phi(N)

x^e\equiv (y^d)^e \equiv y\mod n

Proof:

It's easy to sample from I:

  • pick p,q\in \Pi_n. N=p\cdot q
  • compute \phi(N)=(p-1)(q-1)
  • pick e\gets \mathbb{Z}^*_N. If gcd(e,\phi(N))\neq 1, pick again (\mathbb{Z}_{\phi_(N)}^* has plenty of elements.)

Easy to sample \mathbb{\mathbb{Z}_N^*} (domain).

Easy to compute x^e\mod N.

Hard to invert:


\begin{aligned}
&~~~~P[(N,e)\in I;x\gets \mathbb{Z}_N^*;y=x^e\mod N:f(\mathcal{A}((N,e),y))=y]\\
&=P[(N,e)\in I;x\gets \mathbb{Z}_N^*;y=x^e\mod N:x\gets \mathcal{A}((N,e),y)]\\
&=P[(N,e)\in I;y\gets \mathbb{Z}_N^*;y=x^e\mod N:x\gets \mathcal{A}((N,e),y),x^e\equiv y\mod N]\\
\end{aligned}

By RSA assumption

The second equality follows because for any finite D and bijection f:D\to D, sampling y\in D directly is equivalent to sampling x\gets D, then computing y=f(x).

QED

Theorem If inverting RSA is hard, then factoring is hard.


\textup{ RSA assumption }\implies \textup{ Factoring assumption}

If inverting RSA is hard, then factoring is hard.

i.e If factoring is easy, then inverting RSA is easy.

Proof:

Suppose \mathcal{A} is an adversary that breaks the factoring assumption, then


P[p\gets \Pi_n;q\gets \Pi_n;N=p\cdot q;\mathcal{A}(N)=(p,q)]>\frac{1}{p(n)}

infinitely often.for a polynomial p.

Then we designing B to invert RSA.

Suppose

p,q\gets \Pi_n;N=p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;x\gets \mathbb{Z}^n;y=x^e\mod N

def B(N,e,y):
    """
    Goal: find x
    """
    p,q=A(N)
    if n!=p*q:
        return None
    phiN=(p-1)*(q-1)
    # find modular inverse of e \mod N
    d=extended_euclidean_algorithm(e,phiN)
    # returns (y**d)%N
    x=fast_modular_exponent(y,d,N)
    return x

So the probability of B succeeds is equal to A succeeds, which >\frac{1}{p(n)} infinitely often, breaking RSA assumption.

Remaining question: Can x be found without factoring N? y=x^e\mod N

One-way permutation (Definition 55.1)

A collection function \mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I} is a one-way permutation if

  1. \forall i,f_i is a permutation
  2. \mathcal{F} is a collection of one-way functions

basically, a one-way permutation is a collection of one-way functions that maps \{0,1\}^n to \{0,1\}^n in a bijection way.

Trapdoor permutations

Idea: f:D\to R is a one-way permutation.

y\gets R.

  • Finding x such that f(x)=y is hard.
  • With some secret info about f, finding x is easy.

\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}

  1. \forall i,f_i is a permutation
  2. (i,t)\gets Gen(1^n) efficient. (i\in I paired with t), t is the "trapdoor info"
  3. \forall i,D_i can be sampled efficiently.
  4. \forall i,\forall x,f_i(x) can be computed in polynomial time.
  5. P[(i,t)\gets Gen(1^n);y\gets R_i:f_i(\mathcal{A}(1^n,i,y))=y]<\epsilon(n) (note: \mathcal{A} is not given t)
  6. (trapdoor) There is a p.p.t. B such that given i,y,t, B always finds x such that f_i(x)=y. t is the "trapdoor info"

Theorem RSA is a trapdoor

RSA collection of trapdoor permutation with factorization (p,q) of N, or \phi(N), as trapdoor info f.