3.4 KiB
CSE442T Introduction to Cryptography (Lecture 11)
Exam info posted tonight.
Chapter 3: Indistinguishability and pseudo-randomness
Pseudo-randomness
Idea: Efficiently produce many bits
which "appear" truly random.
One-time pad
m\in\{0,1\}^n
Gen(1^n):k\gets \{0,1\}^N
Enc_k(m)=m\oplus k
Dec_k(c)=c\oplus k
Advantage: Perfectly secret
Disadvantage: Impractical
The goal of pseudo-randomness is to make the algorithm, computationally secure, and practical.
Let \{X_n\} be a sequence of distributions over \{0,1\}^{l(n)}, where l(n) is a polynomial of n.
"Probability ensemble"
Example:
Let U_n be the uniform distribution over \{0,1\}^n
For all x\in \{0,1\}^n
P[x\gets U_n]=\frac{1}{2^n}
For 1\leq i\leq n, P[x_i=1]=\frac{1}{2}
For 1\leq i<j\leq n,P[x_i=1 \textup{ and } x_j=1]=\frac{1}{4} (by independence of different bits.)
Let \{X_n\}_n and \{Y_n\}_n be probability ensembles (separate of dist over \{0,1\}^{l(n)})
\{X_n\}_n and \{Y_n\}_n are computationally in-distinguishable if for all non-uniform p.p.t adversary \mathcal{D} ("distinguishers")
|P[x\gets X_n:\mathcal{D}(x)=1]-P[y\gets Y_n:\mathcal{D}(y)=1]|<\epsilon(n)
this basically means that the probability of finding any pattern in the two array is negligible.
If there is a \mathcal{D} such that
|P[x\gets X_n:\mathcal{D}(x)=1]-P[y\gets Y_n:\mathcal{D}(y)=1]|\geq \mu(n)
then \mathcal{D} is distinguishing with probability \mu(n)
If \mu(n)\geq\frac{1}{p(n)}, then \mathcal{D} is distinguishing the two \implies X_n\cancel{\approx} Y_n
Prediction lemma
X_n^0 and X_n^1 ensembles over \{0,1\}^{l(n)}
Suppose \exists distinguisher \mathcal{D} which distinguish by \geq \mu(n). Then \exists adversary \mathcal{A} such that
P[b\gets\{0,1\};t\gets X_n^b]:\mathcal{A}(t)=b]\geq \frac{1}{2}+\frac{\mu(n)}{2}
Proof:
Without loss of generality, suppose
P[t\gets X^1_n:\mathcal{D}(t)=1]-P[t\gets X_n^0:\mathcal{D}(t)=1]\geq \mu(n)
\mathcal{A}=\mathcal{D} (Outputs 1 if and only if D outputs 1, otherwise 0.)
\begin{aligned}
&~~~~~P[b\gets \{0,1\};t\gets X_n^b:\mathcal{A}(t)=b]\\
&=P[t\gets X_n^1;\mathcal{A}=1]\cdot P[b=1]+P[t\gets X_n^0;\mathcal{A}(t)=0]\cdot P[b=0]\\
&=\frac{1}{2}P[t\gets X_n^1;\mathcal{A}(t)=1]+\frac{1}{2}(1-P[t\gets X_n^0;\mathcal{A}(t)=1])\\
&=\frac{1}{2}+\frac{1}{2}(P[t\gets X_n^1;\mathcal{A}(t)=1]-P[t\gets X_n^0;\mathcal{A}(t)=1])\\
&\geq\frac{1}{2}+\frac{1}{2}\mu(n)\\
\end{aligned}
Pseudo-random
\{X_n\} over \{0,1\}^{l(n)} is pseudorandom if \{X_n\}\approx\{U_{l(n)}\}. i.e. indistinguishable from the true randomness.
Example:
Building distinguishers
X_n: always outputs0^n,\mathcal{D}: [outputs1if $t=0^n$]\vert P[t\gets X_n:\mathcal{D}(t)=1]-P[t\gets U_n:\mathcal{D}(t)=1]\vert=1-\frac{1}{2^n}\approx 1X_n: 1stn-1bits are truly random\gets U_{n-1}nth bit is1with probability 0.50001 and0with 0.49999,D: [outputs1if $X_n=1$]\vert P[t\gets X_n:\mathcal{D}(t)=1]-P[t\gets U_n:\mathcal{D}(t)=1]\vert=0.5001-0.5=0.001\neq 0X_n: For each bitx_i\gets\{0,1\}unless there have been 1 million $0$'s. in a row. Then outputs1,D: [outputs1if $x_1=x_2=...=x_{1000001}=0$]\vert P[t\gets X_n:\mathcal{D}(t)=1]-P[t\gets U_n:\mathcal{D}(t)=1]\vert=|0-\frac{1}{2^{1000001}}|\neq 0