Files
NoteNextra-origin/content/CSE559A/CSE559A_L8.md
2025-11-04 12:43:23 -06:00

81 lines
1.7 KiB
Markdown

# CSE559A Lecture 8
Paper review sharing.
## Recap: Three ways to think about linear classifiers
Geometric view: Hyperplanes in the feature space
Algebraic view: Linear functions of the features
Visual view: One template per class
## Continue on linear classification models
Two layer networks as combination of templates.
Interpretability is lost during the depth increase.
A two layer network is a **universal approximator** (we can approximate any continuous function to arbitrary accuracy). But the hidden layer may need to be huge.
[Multi-layer networks demo](https://playground.tensorflow.org)
### Supervised learning outline
1. Collect training data
2. Specify model (select hyper-parameters)
3. Train model
#### Hyper-parameters selection
- Number of layers, number of units per layer, learning rate, etc.
- Type of non-linearity, regularization, etc.
- Type of loss function, etc.
- SGD settings: batch size, number of epochs, etc.
#### Hyper-parameter searching
Use validation set to evaluate the performance of the model.
Never peek the test set.
Use the training set to do K-fold cross validation.
### Backpropagation
#### Computation graphs
SGD update for each parameter
$$
w_k\gets w_k-\eta\frac{\partial e}{\partial w_k}
$$
$e$ is the error function.
#### Using the chain rule
Suppose $k=1$, $e=l(f_1(x,w_1),y)$
Example: $e=(f_1(x,w_1)-y)^2$
So $h_1=f_1(x,w_1)=w^\top_1x$, $e=l(h_1,y)=(y-h_1)^2$
$$
\frac{\partial e}{\partial w_1}=\frac{\partial e}{\partial h_1}\frac{\partial h_1}{\partial w_1}
$$
$$
\frac{\partial e}{\partial h_1}=2(h_1-y)
$$
$$
\frac{\partial h_1}{\partial w_1}=x
$$
$$
\frac{\partial e}{\partial w_1}=2(h_1-y)x
$$
#### General backpropagation algorithm