3.4 KiB
Lecture 25
Chapter VI Inner Product Spaces
Inner Products and Norms 6A
Dot Product (Euclidean Inner Product)
v\cdot w=v_1w_1+...+v_n w_n
-\cdot -:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}
Some properties
v\cdot v\geq 0v\cdot v=0\iff v=0(u+v)\cdot w=u\cdot w+v\cdot w(c\cdot v)\cdot w=c\cdot(v\cdot w)
Definition 6.2
An inner product \langle,\rangle:V\times V\to \mathbb{F}
Positivity: \langle v,v\rangle\geq 0
Definiteness: \langle v,v\rangle=0\iff v=0
Additivity: \langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle
Homogeneity: \langle \lambda u, v\rangle=\lambda\langle u,v\rangle
Conjugate symmetry: \langle u,v\rangle=\overline{\langle v,u\rangle}
Note: the dot product on \mathbb{R}^n satisfies these properties
Example:
V=C^0([-1,-])
L_2 - inner product.
\langle f,g\rangle=\int^1_{-1} f\cdot g
\langle f,f\rangle=\int ^1_{-1}f^2\geq 0
\langle f+g,h\rangle=\langle f,h\rangle+\langle g,h\rangle
\langle \lambda f,g\rangle=\lambda\langle f,g\rangle
\langle f,g\rangle=\int^1_{-1} f\cdot g=\int^1_{-1} g\cdot f=\langle g,f\rangle
The result is in real vector space so no conjugate...
Theorem 6.6
For \langle,\rangle an inner product
(a) Fix V, then the map given by u\mapsto \langle u,v\rangle is a linear map (Warning: if \mathbb{F}=\mathbb{C}, then u\mapsto\langle u,v\rangle is not linear).
(b,c) \langle 0,v\rangle=\langle v,0\rangle=0
(d) \langle u,v+w\rangle=\langle u,v\rangle+\langle u,w\rangle (second terms are additive.)
(e) \langle u,\lambda v\rangle=\bar{\lambda}\langle u,v\rangle
Definition 6.4
An inner product space is a pair of vector space and inner product on it. (v,\langle,\rangle). In practice, we will say "V is an inner product space" and treat V as the vector space.
For the remainder of the chapter. V,W are inner product vector spaces...
Definition 6.7
For v\in V the norm of $V$ is given by ||v||:=\sqrt{\langle v,v\rangle}
Theorem 6.9
Suppose v\in V.
(a) ||v||=0\iff v=0
(b) ||\lambda v||=|\lambda|\ ||v||
Proof:
||\lambda v||^2=\langle \lambda v,\lambda v\rangle =\lambda\langle v,\lambda v\rangle=\lambda\bar{\lambda}\langle v,v\rangle
So |\lambda|^2 \langle v,v\rangle=|\lambda|^2||v||^2, ||\lambda v||=|\lambda|\ ||v||
Definition 6.10
v,u\in V are orthogonal if \langle v,u\rangle=0.
Theorem 6.12 (Pythagorean Theorem)
If u,v\in V are orthogonal, then ||u+v||^2=||u||^2+||v||
Proof:
\begin{aligned}
||u+v||^2&=\langle u+v,u+v\rangle\\
&=\langle u,u+v\rangle+\langle v,u+v\rangle\\
&=\langle u,u\rangle+\langle u,v\rangle+\langle v,u\rangle+\langle v,v\rangle\\
&=||u||^2+||v||^2
\end{aligned}
Theorem 6.13
Suppose u,v\in V, v\neq 0, set c=\frac{<u,v>}{||v||^2}, then let w=u-v\cdot v, then v and w are orthogonal.
Theorem 6.14 (Cauchy-Schwarz)
Let u,v\in V, then |<u,v>|\leq ||u||\ ||v|| where equality occurs only u,v are parallel...
Proof:
Take the square norm of u=\frac{<u,v>}{||u||^2}v+w.
Theorem 6.17 Triangle Inequality
If u,v\in V, then ||u+v||\leq ||u||+||v||
Proof:
\begin{aligned}
||u+v||^2&=<u+v,u+v>\\
&=<u,u>+<u,v>+<v,u>+<v,v>\\
&=||u||^2+||v||^2+2Re(<u,v>)\\
&\leq ||u||^2+||v||^2+2|<u,v>|\\
&\leq ||u||^2+||v||^2+2||u||\ ||v||\\
&\leq (||u||+||v ||)^2
\end{aligned}