3.1 KiB
Lecture 26
Chapter VI Inner Product Spaces
Inner Products and Norms 6A
Review
Dot products
Inner product
An inner product \langle,\rangle:V\times V\to \mathbb{F}
Positivity: \langle v,v\rangle\geq 0
Definiteness: \langle v,v\rangle=0\iff v=0
Additivity: <u+v,w>=<u,w>+<v,w>
Homogeneity: <\lambda u, v>=\lambda<u,v>
Conjugate symmetry: <u,v>=\overline{<v,u>}
Norm
||v||=\sqrt{<v,v>}
New materials
Orthonormal basis 6B
Definition 6.22
A list of vectors is orthonormal if each vector has norm = 1, and is orthogonal to every other vectors in the list.
if a list e_1,...,e_m\in V is orthonormal if $<e_j,e_k>=1\begin{cases}
1 \textup{ if } j=k\
0 \textup{ if }j\neq k
\end{cases}$.
Example:
- Standard basis in
\mathbb{F}^nis orthonormal. (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}),(\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{-2}{\sqrt{6}})in\mathbb{F}^3is orthonormal.- For
<p,q>=\int^1_{-1}pqon\mathscr{P}_2(\mathbb{R}). The standard basis(1,x,x^2)is not orthonormal.
Theorem 6.24
Suppose e_1,...,e_m is an orthonormal list, then ||a_1 e_1+...+a_m e_m||^2=|a_1|^2+...+|a_m|^2
Proof:
Using induction of m.
m=1, clear (||e_1||^2=1)
m>1, ||a_1 e_1+...a_{m-1}e_{m-1}||^2=|a_1|^2+...+|a_{m-1}|^2 and <a_1 e_1+...+a_{m-1} e_{m-1},a_m e_m>=0 by Pythagorean Theorem. ||(a_1 e_1+...a_{m-1}e_{m-1})+a_m e_m||^2=||a_1 e_1+...a_{m-1}e_{m-1}||^2+||a_m e_m||^2=|a_1|^2+...+|a_{m-1}|^2+|a_m|^2
Theorem 6.25
Every orthonormal list is linearly independent.
Proof:
||a_1 e_1+...+a_m e_m||^2=0, then |a_1|^2+...+|a_m|^2=0, then a_1=...=a_m=0
Theorem 6.28
Every orthonormal list of length dim\ V is a basis.
Definition 6.27
An orthonormal basis is a basis that is an orthonormal list.
Theorem 6.26 Bessel's Inequality
Suppose e_1,...,e_m is an orthonormal list v\in V
|<v,e_1>|^2+...+|<v,e_m>|^2\leq ||v||^2
Proof:
Let v\in V, then let n=<v,e_1>e_1+...+<v,e_m>e_m,
let w=v-u, Note that <u,e_k>=<v,e_k>, thus <w,e_k>=0, <w,u>=0, apply Pythagorean Theorem.
||w+u||^2=||w||^2+||u||^2\\
||v||^2\geq ||u||^2
Theorem 6.30
Suppose e_1,...,e_n is an orthonormal basis, and u,v\in V, then
(a) v=<v,e_1>e_1+...+<v,e_n>e_n
(b) ||v||^2=|<v,e_1>|^2+...+|<v,e_n>|^2
(c) <u,v>=<u,e_1>\overline{<v,e_1>}+...+<u,e_n>\overline{<v,e_n>}
Proof:
(a) let a_1,...,a_n\in \mathbb{F} such that v=a_1 e_1+...+a_n e_n.
\begin{aligned}
<v,e_k>&=<a,e_1,e_k>+...+<a_k e_k,e_k>+...+<a_n e_n,e_n>\\
&=<a_k e_k,e_k>\\
&= a_k
\end{aligned}
Note 6.30 (c) means up to change of basis, every inner product on a finite dimensional vector space "looks like" an euclidean inner products...
Theorem 6.32 Gram-Schmidt
Let v_1,...,v_m be a linearly independent list.
Define f_k\in V by f_1=v_1,f_k=v_k-\sum_{j=1}^{k-1}\frac{<v_k,f_j>}{||f_j||^2}f_j
Define e_k=\frac{f_k}{||f_k||}, then e_1,...,e_m is orthonormal Span(v_1,...,v_m)=Span(f_1,...,f_m)