Files
NoteNextra-origin/pages/Math416/Math416_L23.md
Zheyuan Wu 8d77dcb5f5 update
2025-04-10 12:08:40 -05:00

90 lines
2.2 KiB
Markdown

# Math416 Lecture 23
## Chapter 9: Generalized Cauchy Theorem
### Separation lemma
Let $\Omega$ be an open subset in $\mathbb{C}$, let $K\subset \Omega$ be compact. Then There exists a simple contour $\Gamma$ such that
$$
K\subset \text{int}(\Gamma)\subset \Omega
$$
#### Corollary 9.9 for separation lemma
Let $\Gamma$ be the contour constructed in the separation lemma. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then $\forall z_0\in K$ such that
$$
f(z_0)=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-z_0}dz
$$
Proof:
Suppose $h\in O(G)$, then $\int_{\partial S} h(z)dz=0$, by Cauchy's theorem for square, followed from the triangle case.
So $\int_{\Gamma} h(z)dz=0=\sum_{j=1}^n \int_{\partial S_j} h(z)dz$
Fix $z_0\in K$,
$$
g(z_0)=\begin{cases}
\frac{f(z)-f(z_0)}{z-z_0} & z\neq z_0 \\
f'(z_0) & z=z_0
\end{cases}
$$
So $\int_{\Gamma} g(z)dz=0$
Thus
$$
\begin{aligned}
\int_{\Gamma}\frac{f(z)}{z-z_0}dz-\int_{\Gamma}\frac{f(z_0)}{z-z_0}dz&=0 \\
\int_{\Gamma}\frac{f(z)}{z-z_0}dz&=f(z_0)\int_{\Gamma}\frac{1}{z-z_0}dz \\
&=f(z_0)\cdot 2\pi i
\end{aligned}
$$
QED
#### Theorem 9.10 Cauchy's Theorem
Let $\Omega$ be an open subset in $\mathbb{C}$, let $\Gamma$ be a contour with $int(\Gamma)\subset \Omega$. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then
$$
\int_{\Gamma} f(z)dz=0
$$
Proof:
Let $K\subset \mathbb{C}\setminus \text{ext}(\Gamma)$.
By separation lemma, $\exists \Gamma_1$ s.t. $K\subset \text{int}(\Gamma_1)\subset \Omega$.
Notice that Separation lemma ensured that $w\neq z$ for all $w\in \Gamma_1, z\in \Gamma$.
By Corollary 9.9, $\forall z\in K, f(z)=\frac{1}{2\pi i}\int_{\Gamma_1}\frac{f(w)}{w-z}dw$
$$
\int_{\Gamma} f(z)dz=\frac{1}{2\pi i}\int_{\Gamma}\left[\int_{\Gamma_1}\frac{f(w)}{w-z}dw\right]dz
$$
By Fubini's theorem (In graduate course for analysis),
$$
\begin{aligned}
\int_{\Gamma} f(z)dz&=\frac{1}{2\pi i}\int_{\Gamma_1}\left[\int_{\Gamma}\frac{f(w)}{w-z}dz\right]dw \\
&=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\left[\int_{\Gamma}\frac{1}{w-z}dz\right]dw \\
&=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\cdot 2\pi i \ \text{ind}_{\Gamma}(w)dw \\
&=0
\end{aligned}
$$
Since the winding number for $\Gamma$ on $w\in \Gamma_1$ is 0. ($w$ is outside of $\Gamma$)
QED
### Homotopy