Files
NoteNextra-origin/content/Math4302/Math4302_L3.md
Zheyuan Wu b901998192
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
updates
2026-01-16 23:48:00 -06:00

100 lines
2.0 KiB
Markdown

# Math4302 Modern Algebra (Lecture 3)
## Groups
<details>
<summary>More examples for groups</summary>
Let $\mathbb{Q}^+$ be the set of positive rational numbers.
Then $(\mathbb{Q}^+,\times)$ is a abelian group with identity $1$ and inverse $a^{-1}=\frac{1}{a}$.
If we defined $*$ by $a*b=\frac{ab}{2}$, then we have identity $2$. $a*e=\frac{ae}{2}=a$, we have $e=2$.
and inverse $a^{-1}a=\frac{a^2}{2}=2$, therefore $a^{-1}=\frac{4}{a}$.
This is also an abelian group.
</details>
### Properties for groups
- $(a*b)^{-1}=b^{-1}*a^{-1}$ (inverse)
- $a*b=a*c\implies b=c$ (cancellation on the left)
- $b*a=c*a\implies b=c$ (cancellation on the right)
- If $a*b=e$, then $b=a^{-1}$ (we can solve linear equations)
#### Additional notation
for $n\geq 1$,
- $a^n=a*a\cdot \cdots \cdot a$ (n times)
- $a^{-n}=a^{-1}\cdot \cdots \cdot a^{-1}$ (n times)
for $n=0$, $a^0=e$
We can easily prove this is equivalent to our usual sense for power notations.
That is
- $a^n*a^m=a^{n+m}$
- $(a^n)^m=a^{nm}$
- $a^{-n}=(a^{-1})^n$
### Finite groups
Group with 4 elements.
|*|e|a|b|c|
|---|---|---|---|---|
|e|e|a|b|c|
|a|a|b|c|e|
|b|b|c|e|a|
|c|c|e|a|b|
Note $a,c$ are inverses and $b$ self inverse.
_isomorphic to $(\mathbb{Z}_4,+)$, $(\{1,-1,i,-i\},\cdot)$_
and we may also have
|*|e|a|b|c|
|---|---|---|---|---|
|e|e|a|b|c|
|a|a|e|c|b|
|b|b|c|e|a|
|c|c|b|a|e|
is
#### Cyclic groups
It is the group of integers modulo addition $n$.
- Associativity: $(a+b)+c=a+(b+c)$
- Identity: $a+0=a$
- Inverses: $a+(-a)=0$
For group with $4$ elements
|*|0|1|2|3|
|---|---|---|---|---|
|0|0|1|2|3|
|1|1|2|3|0|
|2|2|3|0|1|
|3|3|0|1|2|
#### Complex numbers
Consider $\{1,i,-1,-i\}$ with multiplication.
|*|1|i|-1|-i|
|---|---|---|---|---|
|1|1|i|-1|-i|
|i|i|-1|-i|1|
|-1|-1|-i|1|i|
|-i|-i|1|i|-1|
Note that if we replace $1$ with $0$ and $i$ with $1$, and $-1$ with $2$ and $-i$ with $3$, you get the exact the same table as $\mathbb{Z}_4$.