Files
NoteNextra-origin/content/CSE510/CSE510_L25.md
Trance-0 970ee8fa5a updates?
2025-11-20 13:03:44 -06:00

102 lines
2.5 KiB
Markdown

# CSE510 Deep Reinforcement Learning (Lecture 25)
> Restore human intelligence
## Linear Value Factorization
[link to paper](https://arxiv.org/abs/2006.00587)
### Why Linear Factorization works?
- Multi-agent reinforcement learning are mostly emprical
- Theoretical Model: Factored Multi-Agent Fitted Q-Iteration (FMA-FQI)
#### Theorem 1
It realize **Counterfactual** credit assignment mechanism.
Agent $i$:
$$
Q_i^{(t+1)}(s,a_i)=\mathbb{E}_{a_{-i}'}\left[y^{(t)}(s,a_i\oplus a_{-i}')\right]-\frac{n-1}{n}\mathbb{E}_{a'}\left[y^{(t)}(s,a')\right]
$$
Here $\mathbb{E}_{a_{-i}'}\left[y^{(t)}(s,a_i\oplus a_{-i}')\right]$ is the evaluation of $a_i$.
and $\mathbb{E}_{a'}\left[y^{(t)}(s,a')\right]$ is the baseline
The target $Q$-value: $y^{(t)}(s,a)=r+\gamma\max_{a'}Q_{tot}^{(t)}(s',a')$
#### Theorem 2
it has local convergence with on-policy training
##### Limitations of Linear Factorization
Linear: $Q_{tot}(s,a)=\sum_{i=1}^{n}Q_{i}(s,a_i)$
Limited Representation: Suboptimal (Prisoner's Dilemma)
|a_2\a_2| Action 1 | Action 2 |
|---|---|---|
|Action 1| **8** | -12 |
|Action 2| -12 | 0 |
After linear factorization:
|a_2\a_2| Action 1 | Action 2 |
|---|---|---|
|Action 1| -6.5 | -5 |
|Action 2| -5 | **-3.5** |
#### Theorem 3
it may diverge with off-policy training
### Perfect Alignment: IGM Factorization
- Individual-Global Maximization (IGM) Constraint
$$
\argmax_{a}Q_{tot}(s,a)=(\argmax_{a_1}Q_1(s,a_1), \dots, \argmax_{a_n}Q_n(s,a_n))
$$
- IGM Factorization: $Q_{tot} (s,a)=f(Q_1(s,a_1), \dots, Q_n(s,a_n))$
- Factorization function $f$ realizes all functions satsisfying IGM.
- FQI-IGM: Fitted Q-Iteration with IGM Factorization
#### Theorem 4
Convergence & optimality. FQI-IGM globally converges to the optimal value function in multi-agent MDPs.
### QPLEX: Multi-Agent Q-Learning with IGM Factorization
[link to paper](https://arxiv.org/pdf/2008.01062)
IGM: $\argmax_a Q_{tot}(s,a)=\begin{pamtrix}
\argmax_{a_1}Q_1(s,a_1) \\
\dots \\
\argmax_{a_n}Q_n(s,a_n)
\end{pmatrix}
$
Core idea:
- Fitting well the values of optimal actions
- Approximate the values of non-optimal actions
QPLEX Mixing Network:
$$
Q_{tot}(s,a)=\sum_{i=1}^{n}\max_{a_i'}Q_i(s,a_i')+\sum_{i=1}^{n} \lambda_i(s,a)(Q_i(s,a_i)-\max_{a_i'}Q_i(s,a_i'))
$$
Here $\sum_{i=1}^{n}\max_{a_i'}Q_i(s,a_i')$ is the baseline $\max_a Q_{tot}(s,a)$
And $Q_i(s,a_i)-\max_{a_i'}Q_i(s,a_i')$ is the "advantage".
Coefficients: $\lambda_i(s,a)>0$, **easily realized and learned with neural networks**
> Continue next time...