20 lines
319 B
Markdown
20 lines
319 B
Markdown
# Math 4121 Lecture 14
|
|
|
|
## Recap
|
|
|
|
### Hankel developedn Riemann's integrabilty criterion.
|
|
|
|
#### Definition
|
|
|
|
Given an interval $I\subset[a,b]$, $f:[a,b]\to\mathbb{R}$ the oscillation of $f$ at $I$ is
|
|
|
|
$$
|
|
\omega(f,I) = \sup_I f - \inf_I f
|
|
$$
|
|
|
|
#### Theorem
|
|
|
|
A bounded function $f$ is Riemann integrable if and only if
|
|
|
|
|