Files
NoteNextra-origin/pages/Math4121/Math4121_L35.md
2025-04-16 10:28:17 -05:00

1.1 KiB

Math4121 Lecture 35

Continue on Lebesgue Integration

Lebesgue Integration

Definition of Lebesgue Integral

For simple functions \phi = \sum_{i=1}^{n} a_i \chi_{S_i}, given a measure E, the Lebesgue integral is defined as:


\int_{\mathbb{R}^n} \phi \, dm = \sum_{i=1}^{n} a_i m(S_i\cap E)

Given a non-negative measurable function f and a measurable set E.

Define \int_E f \, dm = \sup \left\{ \int_E \phi \, dm : \phi \text{ is a simple function and } \phi \leq f \right\}

(We do allows $\int_E f , dm = \infty$)

For general measurable function f, we can define f^-(x)=\max\{0,-f(x)\}, f^+(x)=\max\{0,f(x)\}. (The positive part of the function and the negative part of the function, both non-negative)

Then f=f^+-f^-.

We say f is integrable if \int_E f^+ \, dm < \infty and \int_E f^- \, dm < \infty. (both finite) If at least one is finite, define


\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm

We allow for A-\infty = -\infty and A+\infty = \infty for any A\in \mathbb{R}. But not \infty-\infty.