2.3 KiB
Math4202 Topology II (Lecture 8)
Algebraic Topology
Path homotopy
Recall definition of path homotopy
Let f,f':I\to X be a continuous maps from an interval I=[0,1] to a topological space X.
Two pathes f and f' are path homotopic if
- there exists a continuous map
F:I\times [0,1]\to Xsuch thatF(i,0)=f(i)andF(i,1)=f'(i)for alli\in I. F(s,0)=f(0)andF(s,1)=f(1),\forall s\in I.$F(s,0)=f(0)$ andF(s,1)=f(1),\forall s\in I
Lemma: Homotopy defines an equivalence relation
The \simeq, \simeq_p are both equivalence relations.
Proof
Reflexive:
f:I\to X, F:I\times I\to X, F(s,t)=f(s).
F is a homotopy between f and f itself.
Symmetric:
Suppose f,g:I\to X,
F:I\times I\to X is a homotopy between f and g.
Let H: I\times I\to X be a homotopy between g and f defined as follows:
H(s,t)=F(s,1-t).
H(s,0)=F(s,1)=g(s), H(s,1)=F(s,0)=f(s).
Therefore H is a homotopy between g and f.
Transitive:
Suppose we have f\simeq_p g with homotopy F_1, and g\simeq_p h with homotopy F_2.
Then we can glue the two homotopies together to get a homotopy F between f and h using pasting lemma.
$F(s,t)=(F_1*F_2)(s,t)\coloneqq\begin{cases} F_1(s,2t), & t\in [0,\frac{1}{2}]\ F_2(s,2t-1), & t\in [\frac{1}{2},1] \end{cases}$
Therefore f\simeq_p h with homotopy F.
Note
We use
[x]to denote the equivalence class ofx.
Example of equivalence classes in path homotopy
Let X=\{pt\}, \operatorname{Path}(X)=\{\text{constant map}\}.$\operatorname{Path}/_{\simeq_p}(X)={[\text{constant map}]}$.
X=\{p,q\} with discrete topology, \operatorname{Path}(X)=\{f_{p},f_{q}\}.$\operatorname{Path}/{\simeq_p}(X)={[f{p}], [f_{q}]}$
This applied to all discrete topological spaces.
Let X=\mathbb{R} with standard topology.
\operatorname{Path}(X)=\{f:[0,1]\to \mathbb{R}\in C^0\}
Let f_1,f_2:[0,1]\to \mathbb{R} where f_1(0)=f_2(0), f_1(1)=f_2(1).
Then we can construct a homotopy between f_1 and f_2.
F:[0,1]\times [0,1]\to \mathbb{R}, F(s,t)=(1-t)f_1(s)+tf_2(s) is a homotopy between f_1 and f_2.
\operatorname{Path}/_{\simeq_p}(X)=\{(x_1,x_1)|x_1,x_2\in \mathbb{R}\}
This applies to any convex space V in \mathbb{R}^n.