Files
NoteNextra-origin/pages/Math4121/Math4121_L35.md
2025-04-16 10:31:20 -05:00

66 lines
1.6 KiB
Markdown

# Math4121 Lecture 35
## Continue on Lebesgue Integration
### Lebesgue Integration
#### Definition of Lebesgue Integral
For simple functions $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$, given a measure $E$, the Lebesgue integral is defined as:
$$
\int_{\mathbb{R}^n} \phi \, dm = \sum_{i=1}^{n} a_i m(S_i\cap E)
$$
Given a non-negative measurable function $f$ and a measurable set $E$.
Define $\int_E f \, dm = \sup \left\{ \int_E \phi \, dm : \phi \text{ is a simple function and } \phi \leq f \right\}$
(**We do allows $\int_E f \, dm = \infty$**)
For general measurable function $f$, we can define $f^-(x)=\max\{0,-f(x)\}$, $f^+(x)=\max\{0,f(x)\}$. (The positive part of the function and the negative part of the function, both non-negative)
Then $f=f^+-f^-$.
We say $f$ is integrable if $\int_E f^+ \, dm < \infty$ and $\int_E f^- \, dm < \infty$. (both finite) If at least one is finite, define
$$
\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm
$$
We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$.
#### Immediate Properties of Lebesgue Integral
If $f$ is measurable and $m(E)=0$, then $\int_E f \, dm = 0$.
If $E=E_1\cup E_2$ and $E_1\cap E_2=\emptyset$, then $\int_E f \, dm = \int_{E_1} f \, dm + \int_{E_2} f \, dm$.
#### Corollary
If $f\leq g$ almost everywhere, ($f\leq g$ except for a set of measure 0), then $\int_E f \, dm \leq \int_E g \, dm$.
Proof:
Let $F=\{x\in E: f(x)>g(x)\}$. Then $m(F)=0$.
$$
\begin{aligned}
\int_E f \, dm &= \int_{E\setminus F} f \, dm + \int_F f \, dm\\
&\leq \int_{E\setminus F} g \, dm
\end{aligned}
$$
QED