128 lines
2.8 KiB
Markdown
128 lines
2.8 KiB
Markdown
# CSE442T Lecture 1
|
|
|
|
## Chapter 1: Introduction
|
|
|
|
### Alice sending information to Bob
|
|
|
|
Assuming _Eve_ can always listen
|
|
|
|
Rule 1. Message, Encryption to Code and Decryption to original Message.
|
|
|
|
### Kerckhoffs' principle
|
|
|
|
It states that the security of a cryptographic system shouldn't rely on the secrecy of the algorithm (Assuming Eve knows how everything works.)
|
|
|
|
**Security is due to the security of the key.**
|
|
|
|
### Private key encryption scheme
|
|
|
|
Let $M$ be the set of message that Alice will send to Bob. (The message space) "plaintext"
|
|
|
|
Let $K$ be the set of key that will ever be used. (The key space)
|
|
|
|
$Gen$ be the key generation algorithm.
|
|
|
|
$k\gets Gen(K)$
|
|
|
|
$c\gets Enc_k(m)$ denotes cipher encryption.
|
|
|
|
$m'\gets Dec_k(c')$ $m'$ might be null for incorrect $c'$.
|
|
|
|
$P[k\gets K:Dec_k(Enc_k(M))=m]=1$ The probability of decryption of encrypted message is original message is 1.
|
|
|
|
*_in some cases we can allow the probability not be 1_
|
|
|
|
### Some examples of crypto system
|
|
|
|
Let $M=\text{all five letter strings}$.
|
|
|
|
And $K=[1,10^{10}]$
|
|
|
|
Example:
|
|
|
|
$P[k=k']=\frac{1}{10^{10}}$
|
|
|
|
$Enc_{1234567890}("brion")="brion1234567890"$
|
|
|
|
$Dec_{1234567890}(brion1234567890)="brion"$
|
|
|
|
Seems not very secure but valid crypto system.
|
|
|
|
### Early attempts for crypto system
|
|
|
|
#### Caesar cipher
|
|
|
|
$M=\text{finite string of texts}$
|
|
|
|
$K=[1,26]$
|
|
|
|
$Enc_k=[(i+K)\% 26\ for\ i \in m]=c$
|
|
|
|
$Dec_k=[(i+26-K)\% 26\ for\ i \in c]$
|
|
|
|
```python
|
|
def caesar_cipher_enc(s: str, k:int):
|
|
return ''.join([chr((ord(i)-ord('a')+k)%26+ord('a')) for i in s])
|
|
|
|
def caesar_cipher_dec(s: str, k:int):
|
|
return ''.join([chr((ord(i)-ord('a')+26-k)%26+ord('a')) for i in s])
|
|
```
|
|
|
|
#### Substitution cipher
|
|
|
|
$M=\text{finite string of texts}$
|
|
|
|
$K=\text{set of all bijective linear transformations (for English alphabet},|K|=26!\text{)}$
|
|
|
|
$Enc_k=[iK\ for\ i \in m]=c$
|
|
|
|
$Dec_k=[iK^{-1}\ for\ i \in c]$
|
|
|
|
Fails to frequency analysis
|
|
|
|
#### Vigenere Cipher
|
|
|
|
$M=\text{finite string of texts with length }m$
|
|
|
|
$K=\text{[0,26]}^n$ (assuming English alphabet)
|
|
|
|
```python
|
|
def viginere_cipher_enc(s: str, k: List[int]):
|
|
res=''
|
|
n,m=len(s),len(k)
|
|
j=0
|
|
for i in s:
|
|
res+=caesar_cipher_enc(i,k[j])
|
|
j=(j+1)%m
|
|
return res
|
|
|
|
def viginere_cipher_dec(s: str, k: List[int]):
|
|
res=''
|
|
n,m=len(s),len(k)
|
|
j=0
|
|
for i in s:
|
|
res+=caesar_cipher_dec(i,k[j])
|
|
j=(j+1)%m
|
|
return res
|
|
```
|
|
|
|
#### One time pad
|
|
|
|
Completely random string, sufficiently long.
|
|
|
|
$M=\text{finite string of texts with length }n$
|
|
|
|
$K=\text{[0,26]}^n$ (assuming English alphabet)$
|
|
|
|
$Enc_k=m\oplus k$
|
|
|
|
$Dec_k=c\oplus k$
|
|
|
|
```python
|
|
def one_time_pad_enc(s: str, k: List[int]):
|
|
return ''.join([chr((ord(i)-ord('a')+k[j])%26+ord('a')) for j,i in enumerate(s)])
|
|
|
|
def one_time_pad_dec(s: str, k: List[int]):
|
|
return ''.join([chr((ord(i)-ord('a')+26-k[j])%26+ord('a')) for j,i in enumerate(s)])
|
|
```
|