Files
NoteNextra-origin/content/CSE442T/CSE442T_L2.md
Zheyuan Wu d8e5e34e28 updates
2025-07-12 17:00:42 -05:00

2.4 KiB

CSE442T Lecture 2

Probability review

Sample space S=\text{set of outcomes (possible results of experiments)}

Event A\subseteq S

P[A]=P[ outcome x\in A]

P[\{x\}]=P[x]

Conditional probability:

P[A|B]={P[A\cap B]\over P[B]}

Assuming B is the known information. Moreover, P[B]>0

Probability that A and B occurring: P[A\cap B]=P[A|B]\cdot P[B]

P[B\cap A]=P[B|A]\cdot P[A]

So P[A|B]={P[B|A]\cdot P[A]\over P[B]} (Bayes Theorem)

There is always a chance that random guess would be the password... Although really, really, low...

Law of total probability

Let S=\bigcup_{i=1}^n B_i. and B_i are disjoint events.

A=\bigcup_{i=1}^n A\cap B_i (A\cap B_i are all disjoint)

P[A]=\sum^n_{i=1} P[A|B_i]\cdot P[B_i]

Chapter 1: Introduction

Defining security

Perfect Secrecy (Shannon Secrecy)

k\gets Gen() k\in K

c\gets Enc_k(m) or we can also write as c\gets Enc(k,m) for m\in M

And the decryption procedure:

m'\gets Dec_k(c'), m' might be null.

P[k\gets Gen(): Dec_k(Enc_k(m))=m]=1

Definition 11.1 (Shannon Secrecy)

Distribution D over the message space M

P[k\gets Gen;m\gets D: m=m'|c\gets Enc_k(m)]=P[m\gets D: m=m']

Basically, we cannot gain any information from the encoded message.

Code shall not contain any information changing the distribution of expectation of message after viewing the code.

NO INFO GAINED

Definition 11.2 (Perfect Secrecy)

For any 2 messages, say m_1,m_2\in M and for any possible cipher c,

P[k\gets Gen:c\gets Enc_k(m_1)]=P[k\gets Gen():c\gets Enc_k(m_2)]

For a fixed c, any message (have a equal probability) could be encrypted to that...

Theorem 12.3

Shannon secrecy is equivalent to perfect secrecy.

Proof:

If a crypto-system satisfy perfect secrecy, then it also satisfy Shannon secrecy.

Let (Gen,Enc,Dec) be a perfectly secret crypto-system with K and M.

Let D be any distribution over messages.

Let m'\in M.


={P_k[c\gets Enc_k(m')]\cdot P[m=m']\over P_{k,m}[c\gets Enc_k(m)]}\\

P[k\gets Gen();m\gets D:m=m'|c\gets Enc_k(m)]={P_{k,m}[c\gets Enc_k(m)\vert m=m']\cdot P[m=m']\over P_{k,m}[c\gets Enc_k(m)]}\\
P_{k,m}[c\gets Enc_k(m)]=\sum^n_{i=1}P_{k,m}[c\gets Enc_k(m)|m=m_i]\cdot P[m=m_i]\\
=\sum^n_{i=1}P_{K,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]

and P_{k,m_i}[c\gets Enc_k(m_i)] is constant due to perfect secrecy

\sum^n_{i=1}P_{k,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]=\sum^n_{i=1} P[m=m_i]=1