Files
NoteNextra-origin/content/CSE442T/CSE442T_L22.md
Zheyuan Wu d8e5e34e28 updates
2025-07-12 17:00:42 -05:00

202 lines
6.0 KiB
Markdown

# CSE442T Lecture 22
## Chapter 7: Composability
So far we've sought security against
$$
c\gets Enc_k(m)
$$
Adversary knows $c$, but nothing else.
### Attack models
#### Known plaintext attack (KPA)
Adversary has seen $(m_1,Enc_k(m_1)),(m_2,Enc_k(m_2)),\cdots,(m_q,Enc_k(m_q))$.
$m_1,\cdots,m_q$ are known to the adversary.
Given new $c=Enc_k(m)$, is previous knowledge helpful?
#### Chosen plaintext attack (CPA)
Adversary can choose $m_1,\cdots,m_q$ and obtain $Enc_k(m_1),\cdots,Enc_k(m_q)$.
Then adversary see new encryption $c=Enc_k(m)$. with the same key.
Example:
In WWII, Japan planned to attack "AF", but US suspected it means Midway.
So US use Axis: $Enc_k(AF)$ and ran out of supplies.
Then US know Japan will attack Midway.
#### Chosen ciphertext attack (CCA)
Adversary can choose $c_1,\cdots,c_q$ and obtain $Dec_k(c_1),\cdots,Dec_k(c_q)$.
#### Definition 168.1 (Secure private key encryption against attacks)
Capture these ideas with the adversary having oracle access.
Let $\Pi=(Gen,Enc,Dec)$ be a private key encryption scheme. Let a random variable $IND_b^{O_1,O_2}(\Pi,\mathcal{A},n)$ where $\mathcal{A}$ is an n.u.p.p.t. The security parameter is $n\in \mathbb{N}$, $b\in\{0,1\}$ denoting the real scheme or the adversary's challenge.
The experiment is the following:
- Key $k\gets Gen(1^n)$
- Adversary $\mathcal{A}^{O_1(k)}(1^n)$ queries oracle $O_1$
- $m_0,m_1\gets \mathcal{A}^{O_1(k)}(1^n)$
- $c\gets Enc_k(m_b)$
- $\mathcal{A}^{O_2(c)}(1^n,c)$ queries oracle $O_2$ to distinguish $c$ is encryption of $m_0$ or $m_1$
- $\mathcal{A}$ outputs bit $b'$ which is either zero or one
$\Pi$ is CPA/CCA1/CCA2 secure if for all PPT adversaries $\mathcal{A}$,
$$
\{IND_0^{O_1,O_2}(\Pi,\mathcal{A},n)\}_n\approx\{IND_1^{O_1,O_2}(\Pi,\mathcal{A},n)\}_n
$$
where $\approx$ is statistical indistinguishability.
|Security|$O_1$|$O_2$|
|:---:|:---:|:---:|
|CPA|$Enc_k$|$Enc_k$|
|CCA1|$Enc_k,Dec_k$|$Enc_k$|
|CCA2 (or full CCA)|$Enc_k,Dec_k$|$Enc_k,Dec_k^*$|
Note that $Dec_k^*$ will not allowed to query decryption of a functioning ciphertext.
You can imagine the experiment is a class as follows:
```python
n = 1024
@lru_cache(None)
def oracle_1(m,key,**kwargs):
"""
Query oracle 1
"""
pass
@lru_cache(None)
def oracle_2(c,key,**kwargs):
"""
Query oracle 2
"""
pass
class Experiment:
def __init__(self, key, oracle_1, oracle_2):
self.key = key
self.oracle_1 = oracle_1
self.oracle_2 = oracle_2
def sufficient_trial(self):
pass
def generate_test_message(self):
pass
def set_challenge(self, c):
self.challenge = c
def query_1(self):
while not self.sufficient_trial():
self.oracle_1(m,self.key,**kwargs)
def challenge(self):
"""
Return m_0, m_1 for challenge
"""
m_0, m_1 = self.generate_test_message()
self.m_0 = m_0
self.m_1 = m_1
return m_0, m_1
def query_2(self, c):
while not self.sufficient_trial():
self.oracle_2(c,self.key,**kwargs)
def output(self):
return 0 if self.challenge==m_0 else 1
if __name__ == "__main__":
key = random.randint(0, 2**n)
exp = Experiment(key, oracle_1, oracle_2)
exp.query_1()
m_0, m_1 = exp.challenge()
choice = random.choice([m_0, m_1])
exp.set_challenge(choice)
exp.query_2()
b_prime = exp.output()
print(f"b'={b_prime}, b={choice==m_0}")
```
#### Theorem: Our mms private key encryption scheme is CPA, CCA1 secure.
Have a PRF family $\{f_k\}:\{0,1\}^{|k|}\to\{0,1\}^{|k|}$
$Gen(1^n)$ outputs $k\in\{0,1\}^n$ and samples $f_k$ from the PRF family.
$Enc_k(m)$ samples $r\in\{0,1\}^n$ and outputs $(r,f_k(r)\oplus m)$. For multi-message security, we need to encrypt $m_1,\cdots,m_q$ at once.
$Dec_k(r,c)$ outputs $f_k(r)\oplus c$.
Familiar Theme:
- Show the R.F. version is secure.
- $F\gets RF_n$
- If the PRF version were insecure, then the PRF can be distinguished from a random function...
$IND_b^{O_1,O_2}(\Pi,\mathcal{A},n), F\gets RF_n$
- $Enc$ queries $(m_1,(r_1,m_1\oplus F_k(r_1))),\cdots,(m_{q_1},(r_{q_1},m_{q_1}\oplus F_k(r_{q_1})))$
- $Dec$ queries $(s_1,c_1),\cdots,(s_{q_2},c_{q_2})$, where $m_i=c_i-F_k(s_i)$
- $m_0,m_1\gets \mathcal{A}^{O_2(k)}(1^n)$, $Enc_F(m_b)=(R,M_b+F(R))$
- Query round similar to above.
As long as $R$ was never seen in querying rounds, $P[\mathcal{A} \text{ guesses correctly}]=1/2$.
$P[R\text{ was seen before}]\leq \frac{p(n)}{2^n}$ (by the total number of queries in all rounds.)
**This encryption scheme is not CCA2 secure.**
After round 1, $O^n,1^n\gets \mathcal{A}^{O_1(k)}(1^n)$,
$(r,m+F(r))=(r,c)$ in round 2.
Query $Dec_F(r,c+0\ldots 01)=0\ldots 01 \text{ or } 1\ldots 10$.
$c+0\ldots 01-F(r)=M+0\ldots 01$
### Encrypt then authenticate
Have a PRF family $\{f_k\}:\{0,1\}^|k|\to\{0,1\}^{|k|}$
$Gen(1^n)$ outputs $k_1,k_2\in\{0,1\}^n$ and samples $f_k$ from the PRF family.
$Enc_{k_1,k_2}(m)$ samples $r\in\{0,1\}^n$ and let $c_1=f_{k_1}(r)\oplus m$ and $c_2=f_{k_2}(c_1)$. Then we output $(r,c_1,c_2)$. where $c_1$ is the encryption, and $c_2$ is the tag. For multi-message security, we need to encrypt $m_1,\cdots,m_q$ at once.
$Dec_{k_1,k_2}(r,c_1,c_2)$ checks if $c_2=f_{k_2}(c_1)$. If so, output $c_1-f_{k_1}(r)$. Otherwise, output $\bot$.
Show that this scheme is CPA secure.
1. Show that the modifier version $\Pi'^{RF}$ where $f_{k_2}$ is replaced with a random function is CCA2 secure.
2. If ours isn't, then PRF detector can be created.
Suppose $\Pi^RF$ is not secure, then $\exists \mathcal{A}$ which can distinguish $IND_i^{O_1,O_2}(\Pi'^{RF},\mathcal{A},n)$ with non-negligible probability. We will use this to construct $B$ which breaks the CPA security of $\Pi$.
Let $B$ be the PPT algorithm that on input $1^n$, does the following:
- Run $\mathcal{A}^{O_1,O_2}(\Pi'^{RF},\mathcal{A},n)$
- Let $m_0,m_1$ be the messages that $\mathcal{A}$ asked for in the second round.
- Choose $b\in\{0,1\}$ uniformly at random.
- Query $Enc_{k_1,k_2}(m_b)$ to the oracle.
- Let $c$ be the challenge ciphertext.
- Return whatever $\mathcal{A}$ outputs.