6.2 KiB
Lecture 22
Review
Let (a_n) be a sequence, and let b_n = a_{f(n)} be a rearrangement, where f is given by the following:
n |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \dots |
|---|---|---|---|---|---|---|---|---|---|---|
f(n) |
1 | 2 | 4 | 3 | 6 | 8 | 5 | 10 | 12 | \dots |
(The pattern is "odd,even,even,") Defined the partial sums s_n = \sum_{k=1}^n a_k and t_n = \sum_{k=1}^n b_k.
-
In terms of
a_1,a_2,\ldots, determines_n-t_nforn=1,2,3,4,5,6,7. (For example,s_3-t_3 = a_3-a_4.)
s_1 - t_1 = a_1 - a_1 = 0
s_2 - t_2 = a_2 - a_2 = 0
s_3 - t_3 = a_3 - a_4
s_4 - t_4 = a_4 - a_4 = 0
s_5 - t_5 = a_5 - a_6
s_6 - t_6 = a_6 - a_8
s_7 - t_7 = a_7 - a_8 -
What is the smallest
nso thats_n - t_ndoes not contain any of the termsa_1,\dots, a_5?
n=7 -
What is the smallest
nso thats_n - t_ndoes not contain any of the termsa_1,\dots, a_{10}?
n=13
New Material
Absolute Convergence
Theorem 3.55
Let (a_n) be a sequence in \mathbb{C} such that \sum_{n=1}^\infty |a_n| converges. If (b_n) is a rearrangement of (a_n), then \sum_{n=1}^\infty a_n = \sum_{n=1}^\infty b_n.
Proof:
Let f:\mathbb{N}\to\mathbb{N} be a bijection and let b_n = a_{f(n)}.
Let I(n)=\{1,2,\dots,n\}, J(n)=\{f(1),f(2),\dots,f(n)\}.
Then s_n = \sum_{k\in I(n)} a_k and t_n = \sum_{k\in J(n)} a_k.
\begin{aligned}
s_n - t_n &= \sum_{k=1}^n a_k - \sum_{k=1}^n b_k \\
&= \sum_{k\in I(n)} a_k - \sum_{k\in J(n)} a_{f(k)} \\
&= \sum_{k\in I(n)\backslash J(n)} a_k - \sum_{k\in J(n)\backslash I(n)} a_{f(k)} \\
|s_n - t_n|&\leq \sum_{i\in (I(n)\backslash J(n))\cup(J(n)\backslash I(n))} |a_i|
\end{aligned}
We will show that \lim_{n\to\infty} |s_n - t_n| = 0.
Let \epsilon > 0.
By the Cauchy criterion applied to \sum_{n=1}^\infty |a_n|, there exists N such that if m,n\geq N, then \sum_{k=m+1}^n |a_k| < \epsilon.
Then we choose p\in\mathbb{N} such that I(n)\subset J(p) (\{1,2,\dots,N\}\subset\{f(1),f(2),\dots,f(p)\}). p=\max\{f^{-1}(1),f^{-1}(2),\dots,f^{-1}(N)\}.
Note: This implies that p is at least N.
If n\geq p, then I(n)\subset J(p)\subset I(n)\cap J(n) so s_n = t_n.
So,
|s_n - t_n| \leq \sum_{i=N+1}^{\max J(n)} |a_i| < \epsilon
Back to the example of the review question.
I(9)=\{1,2,\dots,9\},J(9)=\{1,2,4,3,6,8,5,10,12\},I(9)\backslash J(9)=\{7,9\},J(9)\backslash I(9)=\{10,12\}.
|s_9 - t_9| \leq |a_7|+|a_9|+|a_{10}|+|a_{12}| \leq \sum_{k=7}^{12} |a_k| < \epsilon
This proves that $\lim_{n\to\infty} |s_n - t_n| = 0$.
Since $\lim_{n\to\infty} s_n$ exists, $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$.
EOP
#### Theorem 3.54
Special case of Riemann rearrangement theorem
Suppose $a_n\in \mathbb{R}$, $\sum_{n=1}^\infty a_n$ converges conditionally. (i.e. $\sum_{n=1}^\infty a_n$ converges but $\sum_{n=1}^\infty |a_n|$ diverges.) Then $\forall \alpha\in\mathbb{R}$, there exists a rearrangement $(b_n)$ of $(a_n)$ such that $\sum_{n=1}^\infty b_n = \alpha$.
## Chapter 4 Continuity
### Limits of Functions
#### Definition 4.1
Let $(X,d_X)$ and $(Y,d_Y)$ be metric spaces and $E\subset X$, $p\in E'$, $q\in Y$. Let $f:E\to Y$. We say that $\lim_{x\to p} f(x) = q$ if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x\in E$, if $0 < d_X(x,p) < \delta$, then $d_Y(f(x),q) < \epsilon$.
This is same as:
If $\lim_{x\to p} f(x)=q$, then
\forall \epsilon > 0, \exists \delta > 0, \forall x\in E, 0 < d_X(x,p) < \delta \implies d_Y(f(x),q) < \epsilon
In many definitions, $E=X$
#### Theorem 4.2
$\lim_{x\to p} f(x) = q \iff$ forall sequence $(p_n)$ in $E\backslash\{p\}$ with $p_n\to p$, $f(p_n)\to q$.
Proof:
$\implies$
Suppose $\lim_{x\to p} f(x) = q$.
Let $(p_n)$ be a sequence in $E\backslash\{p\}$ with $p_n\to p$.
Let $\epsilon > 0$.
By definition of limit of function, $\exists \delta > 0$ such that if $0 < d_X(x,p) < \delta$, then $d_Y(f(x),q) < \epsilon$.
Since $p_n\to p$, $\exists N$ such that if $n\geq N$, then $0 < d_X(p_n,p) < \delta$. So $f(p_n)\in B_\epsilon(q)$.
Thus, we showed $\forall \epsilon > 0$, $\exists N$ such that if $n\geq N$, then $f(p_n)\in B_\epsilon(q)$.
$\impliedby$
We proceed by contrapositive.
Suppose $\lim_{x\to p} f(x) \neq q$, then $\exists$ sequence $(p_n)$ in $E\backslash\{p\}$ with $p_n\to p$ such that $f(p_n)\cancel{\to} q$.
Suppose $\lim_{n\to\infty} f(p_n) \neq q$, then $\exists \epsilon > 0$ such that for all $\delta > 0$, there exists $x\in E\cap B_\delta(p)\backslash\{p\}$ such that $f(x)\notin B_\epsilon(q)$.
For $n\in\mathbb{N}$, if we apply this with $\delta = \frac{1}{n}$, we get $p_n\in E\cap B_{\frac{1}{n}}(p)\backslash\{p\}$ such that $f(p_n)\notin B_\epsilon(q)$.
Then: $(p_n)$ is a sequence in $E\backslash\{p\}$ with $d_X(p_n,p) = \frac{1}{n}\to 0$ so that as $n\to\infty$, $f(p_n)\notin B_\epsilon(q)$.
So $\lim_{n\to\infty} f(p_n) \neq q$.
EOP
With this theorem, we can use the properties of limit of sequences to study limits of functions.
To prove things about limits of functions, we can use sequences.
- If $\lim_{x\to p} f(x) = q$, and $\lim_{x\to p} f(x)=q'$, then $q=q'$.
- If $\lim_{x\to p} f(x) = A$ and $\lim_{x\to p} g(x) = B$, then $\lim_{x\to p} f(x) + g(x) = A+B$.
### Continuous functions
#### Definition 4.5
Let $(X,d_X)$ and $(Y,d_Y)$ be metric spaces and $E\subset X$, $p\in E$. Let $f:E\to Y$. We say that $f$ is continuous at $p$ if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $f(E\cap B_\delta(p))\subset B_\epsilon(f(p))$.
- We say that $f$ is continuous on $E$ if $f$ is continuous at every $p\in E$.
> Remark: For $p\in E$, there are two possibilities.
>
> - $p$ is an isolated point of $E$.
> - $p$ is a limit point of $E$.
>
> In the first case, $f$ is automatically continuous at $p$. ($E\cap B_\delta(p)=\{p\}$ for all $\delta > 0$.)
>
> In the second case, $f$ is continuous at $p$ if and only if $\lim_{x\to p} f(x) = f(p)$.
#### Theorem 4.8
A function $f:E\to Y$ is continuous at $p\in E$ if the pre-image of every open set is open.
Two consequences if $f:E\to Y$ is continuous:
- Image of compact set is compact. (Implies Extreme Value Theorem)
- Image of connected set is connected. (Implies Intermediate Value Theorem)