Files
NoteNextra-origin/content/CSE442T/CSE442T_L1.md
2025-09-17 14:27:46 -05:00

128 lines
2.8 KiB
Markdown

# CSE442T Introduction to Cryptography (Lecture 1)
## Chapter 1: Introduction
### Alice sending information to Bob
Assuming _Eve_ can always listen
Rule 1. Message, Encryption to Code and Decryption to original Message.
### Kerckhoffs' principle
It states that the security of a cryptographic system shouldn't rely on the secrecy of the algorithm (Assuming Eve knows how everything works.)
**Security is due to the security of the key.**
### Private key encryption scheme
Let $M$ be the set of message that Alice will send to Bob. (The message space) "plaintext"
Let $K$ be the set of key that will ever be used. (The key space)
$Gen$ be the key generation algorithm.
$k\gets Gen(K)$
$c\gets Enc_k(m)$ denotes cipher encryption.
$m'\gets Dec_k(c')$ $m'$ might be null for incorrect $c'$.
$P[k\gets K:Dec_k(Enc_k(M))=m]=1$ The probability of decryption of encrypted message is original message is 1.
*_in some cases we can allow the probability not be 1_
### Some examples of crypto system
Let $M=\text{all five letter strings}$.
And $K=[1,10^{10}]$
Example:
$P[k=k']=\frac{1}{10^{10}}$
$Enc_{1234567890}("brion")="brion1234567890"$
$Dec_{1234567890}(brion1234567890)="brion"$
Seems not very secure but valid crypto system.
### Early attempts for crypto system
#### Caesar cipher
$M=\text{finite string of texts}$
$K=[1,26]$
$Enc_k=[(i+K)\% 26\ for\ i \in m]=c$
$Dec_k=[(i+26-K)\% 26\ for\ i \in c]$
```python
def caesar_cipher_enc(s: str, k:int):
return ''.join([chr((ord(i)-ord('a')+k)%26+ord('a')) for i in s])
def caesar_cipher_dec(s: str, k:int):
return ''.join([chr((ord(i)-ord('a')+26-k)%26+ord('a')) for i in s])
```
#### Substitution cipher
$M=\text{finite string of texts}$
$K=\text{set of all bijective linear transformations (for English alphabet},|K|=26!\text{)}$
$Enc_k=[iK\ for\ i \in m]=c$
$Dec_k=[iK^{-1}\ for\ i \in c]$
Fails to frequency analysis
#### Vigenere Cipher
$M=\text{finite string of texts with length }m$
$K=\text{[0,26]}^n$ (assuming English alphabet)
```python
def viginere_cipher_enc(s: str, k: List[int]):
res=''
n,m=len(s),len(k)
j=0
for i in s:
res+=caesar_cipher_enc(i,k[j])
j=(j+1)%m
return res
def viginere_cipher_dec(s: str, k: List[int]):
res=''
n,m=len(s),len(k)
j=0
for i in s:
res+=caesar_cipher_dec(i,k[j])
j=(j+1)%m
return res
```
#### One time pad
Completely random string, sufficiently long.
$M=\text{finite string of texts with length }n$
$K=\text{[0,26]}^n$ (assuming English alphabet)$
$Enc_k=m\oplus k$
$Dec_k=c\oplus k$
```python
def one_time_pad_enc(s: str, k: List[int]):
return ''.join([chr((ord(i)-ord('a')+k[j])%26+ord('a')) for j,i in enumerate(s)])
def one_time_pad_dec(s: str, k: List[int]):
return ''.join([chr((ord(i)-ord('a')+26-k[j])%26+ord('a')) for j,i in enumerate(s)])
```