Files
NoteNextra-origin/content/CSE442T/CSE442T_L9.md
2025-09-17 14:27:46 -05:00

3.1 KiB

CSE442T Introduction to Cryptography (Lecture 9)

Chapter 2: Computational Hardness

Continue on Cyclic groups


\begin{aligned}
107^{662}\mod 51&=(107\mod 51)^{662}\mod 51\\
&=5^{662}\mod 51
\end{aligned}

Remind that \phi(p),p\in\Pi,\phi(p)=p-1.

51=3\times 17,\phi(51)=\phi(3)\times \phi(17)=2\times 16=32, So 5^{32}\mod 1

5^2\equiv 25\mod 51=25
5^4\equiv (5^2)^2\equiv(25)^2 \mod 51\equiv 625\mod 51=13
5^8\equiv (5^4)^2\equiv(13)^2 \mod 51\equiv 169\mod 51=16
5^16\equiv (5^8)^2\equiv(16)^2 \mod 51\equiv 256\mod 51=1


\begin{aligned}
5^{662}\mod 51&=107^{662\mod 32}\mod 51\\
&=5^{22}\mod 51\\
&=5^{16}\cdot 5^4\cdot 5^2\mod 51\\
&=19
\end{aligned}

For a\in \mathbb{Z}_N^*, the order of a, o(a) is the smallest positive k such that a^k\equiv 1\mod N. o(a)\leq \phi(N),o(a)|\phi (N)

In a general finite group

g^{|G|}=e (identity)

o(g)\vert |G|

If a group G=\{a,a^2,a^3,...,e\} G is cyclic

In a cyclic group, if o(a)=|G|, then a is a generator of G.

Fact: \mathbb{Z}^*_p is cyclic

|\mathbb{Z}^*_p|=p-1, so \exists generator g, and \mathbb{Z}, \phi(\mathbb{Z}_{13}^*)=12

For example, 2 is a generator for \mathbb{Z}_{13}^* with 2,4,8,3,6,12,11,9,5,10,7,1.

If g is a generator, f:\mathbb{Z}_p^*\to \mathbb{Z}_p^*, f(x)=g^x \mod p is onto.

What type of prime p?

  • Large prime.
  • If p-1 is very factorable, that is very bad.
    • Pohlig-Hellman algorithm
    • p=2^n+1 only need polynomial time to invert
  • We want p=2q+1, where q is prime. (Sophie Germain primes, or safe primes)

There are probably infinitely many safe prime and efficient to sample as well.

If p is safe, g generator.


\mathbb{Z}_p^*=\{g,g^2,..,e\}

Then \{g^2,...g^{2q}\}S_{g,p}\subseteq \mathbb{Z}_p^* is a subgroup; g^{2k}\cdot g^{2l}=g^{2(k+l)}\in S_{g,p}

It is cyclic with generator g^2.

It is easy to find a generator.

  • Pick a\in \mathbb{Z}_p^*
  • Let x=a^2. If x\neq 1, it is a generator of subgroup S_p
    • S_p=\{x,x^2,...,x^q\}\mod p

Example: p=2\cdot 11+1=23

we have a subgroup with generator 4 and S_4=\{4,16,18,3,12,2,8,9,13,6,1\}

def get_generator(p):
    """
    p should be a prime, or you need to do factorization
    """
    g=[]
    for i in range(2,p-1):
        k=i
        sg=[]
        step=p
        while k!=1 and step>0:
            if k==0:
                raise ValueError(f"Damn, {i} generates 0 for group {p}")
            sg.append(k)
            k=(k*i)%p
            step-=1
        sg.append(1)
        # if len(sg)!=(p-1): continue
        g.append((i,[j for j in sg]))
    return g

(Computational) Diffie-Hellman assumption

If p is a randomly sampled safe prime.

Denote safe prime as \tilde{\Pi}_n=\{p\in \Pi_n:q=\frac{p-1}{2}\in \Pi_{n-1}\}

Then


P\left[p\gets \tilde{\Pi_n};a\gets\mathbb{Z}_p^*;g=a^2\neq 1;x\gets \mathbb{Z}_q;y=g^x\mod p:\mathcal{A}(y)=x\right]\leq \epsilon(n)

p\gets \tilde{\Pi_n};a\gets\mathbb{Z}_p^*;g=a^2\neq 1 is the function condition when we do the encryption on cyclic groups.

Notes: f:\Z_q\to \mathbb{Z}_p^* is one-to-one, so f(\mathcal{A}(y))\iff \mathcal{A}(y)=x