6.3 KiB
CSE510 Deep Reinforcement Learning (Lecture 12)
Policy Gradient Theorem
For any differentiable policy \pi_\theta(s,a), for any o the policy objective functions J=J_1, J_{avR} or \frac{1}{1-\gamma} J_{avV}
The policy gradient is
\nabla_{\theta}J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q^{\pi_\theta}(s,a)\right]
Policy Gradient Methods
Advantages of Policy-Based RL
Advantages:
- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies
Disadvantages:
- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance
Anchor-Critic Methods
Q Actor-Critic
Reducing Variance Using a Critic
Monte-Carlo Policy Gradient still has high variance.
We use a critic to estimate the action-value function Q_w(s,a)\approx Q^{\pi_\theta}(s,a).
Anchor-critic algorithms maintain two sets of parameters:
Critic: updates action-value function parameters w
Actor: updates policy parameters \theta, in direction suggested by the critic.
Actor-critic algorithms follow an approximate policy gradient:
\nabla_\theta J(\theta) \approx \mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)\right]
\Delta \theta = \alpha \nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)
Action-Value Actor-Critic
- Simple actor-critic algorithm based on action-value critic
- Using linear value function approximation
Q_w(s,a)=\phi(s,a)^T w
Critic: updates w by linear TD(0)
Actor: updates \theta by policy gradient
def Q_actor-critic(states,theta):
actions=sample_actions(a,pi_theta)
for i in range(num_steps):
reward=sample_rewards(actions,states)
transition=sample_transition(actions,states)
new_actions=sample_action(transition,theta)
delta=sample_reward+gamma*Q_w(transition, new_actions)-Q_w(states, actions)
theta=theta+alpha*nabla_theta*log(pi_theta(states, actions))*Q_w(states, actions)
w=w+beta*delta*phi(states, actions)
a=new_actions
s=transition
Advantage Actor-Critic
Reducing variance using a baseline
- We subtract a baseline function
B(s)form the policy gradient - This can reduce the variance without changing expectation
\begin{aligned}
\mathbb{E}_{\pi_\theta}\left[\nabla_\theta\log \pi_\theta(s,a)B(s)\right]&=\sum_{s\in S}d^{\pi_\theta}(s)\sum_{a\in A}\nabla_{\theta}\pi_\theta(s,a)B(s)\\
&=\sum_{s\in S}d^{\pi_\theta}B(s)\nabla_\theta\sum_{a\in A}\pi_\theta(s,a)\\
&=0
\end{aligned}
A good baseline is the state value function B(s)=V^{\pi_\theta}(s)
So we can rewrite the policy gradient using the advantage function A^{\pi_\theta}(s,a)=Q^{\pi_\theta}(s,a)-V^{\pi_theta}(s)
\nabla_\theta J(\theta)=\mathbb{E}\left[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_theta}(s,a)\right]
Estimating the Advantage function
Method 1: direct estimation
May increase the variance
The advantage function can significantly reduce variance of policy gradient
So the critic should really estimate the advantage function
For example, by estimating both V^{\pi_theta}(s) and Q^{\pi_theta}(s,a)
Using two function approximators and two parameter vectors,
V_v(s)\approx V^{\pi_\theta}(s)\\
Q_w(s,a)\approx Q^{\pi_\theta}(s,a)\\
A(s,a)=Q_w(s,a)-V_v(s)
And updating both value functions by e.g. TD learning
Method 2: using the TD error
We can prove that TD error is an unbiased estimation of the advantage function
For the true value function V^{\pi_\theta}(s), the TD error \delta^{\pi_\theta}
\delta^{\pi_\theta} = r + \gamma V^{\pi_\theta}(s) - V^{\pi_\theta}(s)
is an unbiased estimate of the advantage function
\begin{aligned}
\mathbb{E}_{\pi_\theta}[\delta^{\pi_\theta}| s,a]&=\mathbb{E}_{\pi_\theta}[r + \gamma V^{\pi_\theta}(s') |s,a]-V^{\pi_\theta}(s)\\
&=Q^{\pi_\theta}(s,a)-V^{\pi_\theta}(s)\\
&=A^{\pi_\theta}(s,a)
\end{aligned}
So we can use the TD error to compute the policy gradient
\Delta \theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}]
In practice, we can use an approximate TD error \delta_v=r+\gamma V_v(s')-V_v(s) to compute the policy gradient
Summary of policy gradient algorithms
THe policy gradient has many equivalent forms.
\begin{aligned}
\nabla_\theta J(\theta) &= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) v_t] \text{ REINFORCE} \\
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)] \text{ Q Actor-Critic} \\
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_\theta}(s,a)] \text{ Advantage Actor-Critic} \\
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}] \text{ TD Actor-Critic}
\end{aligned}
Each leads s stochastic gradient ascent algorithm.
Critic use policy evaluation to estimate the Q^\pi(s,a) or A^\pi(s,a) or V^\pi(s).
Compatible Function Approximation
If the following two conditions are satisfied:
- Value function approximation is a compatible with the policy
\nabla_w Q_w(s,a) = \nabla_\theta \log \pi_\theta(s,a) - Value function parameters
wminimize the MSE
Note\epsilon = \mathbb{E}_{\pi_\theta}[(Q^{\pi_\theta}(s,a)-Q_w(s,a))^2]\epsilonneed not be zero, just need to be minimized.
Then the policy gradient is exact
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)]
Remember:
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q^{\pi_\theta}(s,a)]
Challenges with Policy Gradient Methods
- Data Inefficiency
- On-policy method: for each new policy, we need to generate a completely new
- trajectory
- The data is thrown out after just one gradient update
- As complex neural networks need many updates, this makes the training process very slow
- Unstable update: step size is very important
- If step size is too large:
- Large step -> bad policy
- Next batch is generated from current bad policy -> collect bad samples
- Bad samples -> worse policy (compare to supervised learning: the correct label and data in the following batches may correct it)
- If step size is too small: the learning process is slow
- If step size is too large: