Files
NoteNextra-origin/content/CSE510/CSE510_L13.md
Trance-0 e425088318 updates
2025-10-14 11:19:51 -05:00

7.4 KiB
Raw Blame History

CSE510 Deep Reinforcement Learning (Lecture 13)

Recap from last lecture

For any differentiable policy \pi_\theta(s,a), for any o the policy objective functions J=J_1, J_{avR} or \frac{1}{1-\gamma} J_{avV}

The policy gradient is

\nabla_{\theta}J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q^{\pi_\theta}(s,a)\right]

Problem for policy gradient method

Data Inefficiency

  • On-policy method: for each new policy, we need to generate a completely new trajectory
  • The data is thrown out after just one gradient update
  • As complex neural networks need many updates, this makes the training process very slow

Unstable update step size is very important

  • If step size is too large:
    • Large step -> bad policy
    • Next batch is generated from current bad policy → collect bad samples
    • Bad samples -> worse policy (compare to supervised learning: the correct label and data in the following batches may correct it)
  • If step size is too small: the learning process is slow

Deriving the optimization objection function of Trusted Region Policy Optimization (TRPO)

Objective of Policy Gradient Methods

Policy Objective


J(\pi_\theta)=\mathbb{E}_{\tau\sim \pi_theta}\sum_{t=0}^{\infty} \gamma^t r^t

here \tau is the trajectory for the policy \pi_\theta.

Policy objective can be written in terms of old one:


J(\pi_{\theta'})-J(\pi_{\theta})=\mathbb{E}_{\tau \sim \pi_{\theta'}}\sum_{t=0}^{\infty}\gamma^t A^{\pi_\theta}(s_t,a_t)

Equivalently for succinctness:


J(\pi')-J(\pi)=\mathbb{E}_{\tau\in \pi'}\sum_{t=0}^{\infty} A^{\pi}(s_t,a_t)
Proof

\begin{aligned}
&\mathbb{E}_{\tau\sim \pi'}\left[\gamma^t  A^{\pi_\theta}(s_t,a_t)\right]\\
&=E_{\tau\sim \pi'}\left[\sum_{t=0}^{\infty}\gamma^t R(s_0)+\sum_{t=0}^{\infty} \gamma^{t+1}V^{\pi}(s_{t+1})-\sum_{t=0}^{\infty} \gamma^{t}V^\pi(s_t)\right]\\
&=J(\pi')+\sum_{t=1}^{\infty} \gamma^{t}V^{\pi}(s_t)-\sum_{t=0}^{\infty} \gamma^{t}V^\pi(s_t)\\
&=J(\pi')-\mathbb{E}_{\tau\sim\pi'}V^{\pi}(s_0)\\
&=J(\pi')-J(\pi)
\end{aligned}

Importance Sampling

Estimate one distribution by sampling form anther distribution


\begin{aligned}
\mathbb{E}_{x\sim p}[f(x)]&=\int f(x)p(x)dx
&=\int f(x)\frac{p(x)}{q(x)}q(x)dx\\
&=\mathbb{E}_{x\sim q}\left[f(x)\frac{p(x)}{q(x)}\right]\\
&\approx \frac{1}{N}\sum_{i=1,x^i\in q}^N f(x^i)\frac{p(x^i)}{q(x^i)}
\end{aligned}

Estimating objective with importance sampling

Discounted state visit distribution:


d^\pi(s)=(1-\gamma)\sum_{t=0}^{\infty}\gamma^t P(s_t=s|\pi)

\begin{aligned}
J(\pi')-J(\pi)&=\mathbb{E}_{\tau\sim\pi'}\sum_{t=0}^{\infty} \gamma^t A^{\pi}(s_t,a_t)\\
&=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi'} A^{\pi}(s,a)\\
&=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi}\left[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}\right]\\
\end{aligned}

Using the old policy to sample states form a policy that we are trying to optimize.


L_\pi(\pi')=\mathbb{E}_{s\sim d^{\pi'}, a\sim \pi}\left[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}\right]

Lower bound of Optimization

Note

(Kullback-Leibler) KL divergence is a measure of the difference between two probability distributions.

D_{KL}(\pi(\dot|s)||\pi'(\dot|s))=\int_s \pi(a|s)\log \frac{\pi(a|s)}{\pi'(a|s)}da


J(\pi')-J(\pi)\geq L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))

where C is a constant.

Optimizing the objective function:


\max_{\pi'} J(\pi')-J(\pi)

By maximizing the lower bound


\max_{\pi'} L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))

Monotonic Improvement Theorem

Proof of improvement guarantee: Suppose \pi_{k+1} and \pi_k are related by


\pi_{k+1}=\max_{\pi'} L_\pi(\pi')-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))

\pi_{k} is a feasible point, and the objective at \pi_k is equal to 0.


L_{\pi_k}(\pi_{k})\propto \mathbb{E}_{s,a\sim d^{\pi_k}}[A^{\pi_k}(s,a)]=0

D_{KL}(\pi_k||\pi_k)[s]=0

Optimal value \geq 0.

By the performance bound, J_{pi_{k+1}}-J_{pi_k}\geq 0.

Final objective function


\max_{\pi'}\mathbb{E}_{s\sim d^{\pi}, a\sim \pi}[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}]-C\max_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))

by approximation


\max_{\pi'}\mathbb{E}_{s\sim d^{\pi}, a\sim \pi}[A^{\pi'}(s,a)\frac{\pi'(a|s)}{\pi(a|s)}]-C\mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))

With the Lagrangian Duality, the objective is mathematically the same as following using a trust region constraint:


\max_{\pi'} L_\pi(\pi')

such that


\mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))\leq \delta

C gets very high when \gamma is close to one and the corresponding gradient step size becomes too small.


C\propto \frac{\epsilon \gamma}{(1-\gamma)^2}
  • Empirical results show that it needs to more adaptive
  • But Tuning C is hard (need some trick just like PPO)
  • TRPO uses trust region constraint and make \delta a tunable hyperparameter.

Trust Region Policy Optimization (TRPO)


\max_{\pi'} L_\pi(\pi')

such that


\mathbb{E}_{s\in S}D_{KL}(\pi(\dot|s)||\pi'(\dot|s))\leq \delta

Make linear approximation to L_{\pi_{\theta_{old}}} and quadratic approximation to KL term.

Maximize g\cdot(\theta-\theta_{old})-\frac{\beta}{2}(\theta-\theta_{old})^T F(\theta-\theta_{old})

where g=\frac{\partial}{\partial \theta}L_{\pi_{\theta_{old}}}(\pi_{\theta})\vert_{\theta=\theta_{old}} and F=\frac{\partial^2}{\partial \theta^2}\overline{KL}_{\pi_{\theta_{old}}}(\pi_{\theta})\vert_{\theta=\theta_{old}}

Taylor Expansion of KL Term

D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\approx D_{KL}(\pi_{\theta_{old}}|\pi_{\theta_{old}})+d^T \nabla_\theta D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}+\frac{1}{2}d^T \nabla_\theta^2 D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}d

\begin{aligned}
\nabla_\theta D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})&=-\nabla_\theta \mathbb{E}_{x\sim \pi_{\theta_{old}}}\log P_\theta(x)\vert_{\theta=\theta_{old}}\\
&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta \log P_\theta(x)\vert_{\theta=\theta_{old}}\\
&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\frac{1}{\pi_{\theta_{old}}(x)}\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}}\\
&=\int_x P_{\theta_{old}}(x)\frac{1}{P_{\theta_{old}}(x)}\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}} dx\\
&=\int_x P_{\theta_{old}}(x)\nabla_\theta P_\theta(x)\vert_{\theta=\theta_{old}} dx\\
&=\nabla_\theta \int_x P_{\theta_{old}}(x) \vert_{\theta=\theta_{old}} dx\\
&=0
\end{aligned}

\begin{aligned}
\nabla_\theta^2 D_{KL}(\pi_{\theta_{old}}|\pi_{\theta})\vert_{\theta=\theta_{old}}&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta^2 \log P_\theta(x)\vert_{\theta=\theta_{old}}\\
&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta \left(\frac{\nabla_\theta P_\theta(x)}{P_\theta(x)}\right)\vert_{\theta=\theta_{old}}\\
&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\frac{\nabla_\theta^2 P_\theta(x)-\nabla_\theta P_\theta(x)\nabla_\theta P_\theta(x)^T}{P_\theta(x)^2}\right)\vert_{\theta=\theta_{old}}\\
&=-\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\frac{\nabla_\theta^2 P_\theta(x)\vert_{\theta=\theta_{old}}}P_{\theta_{old}}(x)\right)+\mathbb{E}_{x\sim \pi_{\theta_{old}}}\left(\nabla_\theta \log P_\theta(x)\nabla_\theta \log P_\theta(x)^T\right)\vert_{\theta=\theta_{old}}\\
&=\mathbb{E}_{x\sim \pi_{\theta_{old}}}\nabla_\theta\log P_\theta(x)\nabla_\theta\log P_\theta(x)^T\vert_{\theta=\theta_{old}}\\
\end{aligned}