3.1 KiB
Lecture 7
Review
Let S=\{(x,y,z)\in \mathbb{R}^3:x=1,y=4\}=\{(1,4,z):z\in\mathbb{R}\}
-
How can we describe the set
Sgeometrically in three-dimensional space?Just a line
-
Show that
Sand\mathbb{R}are in one-to-one correspondence.We can find a bijective function
f:S\to \mathbb{R} -
Show that for any
(a,b)\in\mathbb{Z}^2, the set\{(a,b,z):z\in\mathbb{Z}\}is in one-to-one correspondence with\mathbb{Z}Use Theorem 2.13
Ais countable,n\in \mathbb{N} \implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}, is countable.
New materials
Metric spaces
Definition 2.15
Let X be a set. A function d:X\times X\to \mathbb{R} is called a distance function or a metric if it satisfies:
- Positivity:
\forall p,q\in X,p\neq q\implies d(p,q)>0, and\forall p\in X,d(p,p)=0. - Symmetry:
\forall p,q\in X, d(p,q)=d(q,p). - Triangle inequality:
\forall p,q,r\in X,d(p,q)\leq d(p,r)+d(r,q)
We say (X,d) is a metric space. If d is understood, X is a metric space.
Examples:
The most important example:
X\subset \mathbb{R}^k(k\geq 1)
d(x,y)=|x-y|
And other examples: function spaces...
An example from graph theory (not needed for this class):
d(p,q) can be defined by the shortest path fro p to q.
Definition 2.17
By the segment (a,b) we mean the set of all real numbers x such that a<x<b.
segment excludes the bound (a,b)
By the interval [a,b] we mean the set of all real numbers x such that a\leq x\leq b
- interval include the bound*
[a,b]
Convex: E\subset \mathbb{R}^k is convex if \forall x,y\in E,\{\lambda x+(1-\lambda)y:\lambda\in (0,1)\}\subset E
Open sets
Definition 2.18
Let (X,d) be a metric space.
p\in X,r>0. The r-neighborhood ofpisB_r(p)=N_r(o)=\{q\in X: d(p,q)<r\}(a ball in metric space)E\subset X,p\in X. We saypis an interior point ofEif\exists r>0such thatB_r(p)\subset E. Notation $E^{\circ}=$set of interior points ofEE\subset X, we sayEis open ifE\subset E^{\circ}, i.e.\forall p\in E, \exists r>0such thatB_r(p)\subset E.
Note: is follows from definitions that E^{\circ}\subset E is always true.
Example:
$X=\mathbb{R}^2$(d be the euclidean distance) E=[0,1)\times [0,1).
E^{\circ}=(0,1)\times (0,1)
So E=(0,1)\times (0,1) is a open set.
Theorem 2.19
Let (X,d) be a metric space, \forall p\in X,\forall r>0, B_r(p) is an open set.
every ball is an open set
Proof
Let q\in B_r(p).
Let h=r-d(p,q).
Since q\in B_r(p),h>0. We claim that B_h(q). Then d(q,s)<h, so d(p,s)\leq d(p,q)+d(q,s)<d(p,q)+h=r. (using triangle inequality) So S\in B_r(p).
Closed sets
-
E\subset X,p\in X. We saypis a limit point ofEif\forall r>0, (B_r(p)\cap E)\backslash {p}\neq \phi.Let
E'be the set of limit points ofE. -
Eis closed ifE'\subset E
Example:
X=\mathbb{R}^2, E=[0,1)\times [0,1).
(1,1) is a limit point.
X=\mathbb{R},E=\{\frac{1}{n},n\in \mathbb{N}\}
0 is the only limit point. E'=\{0\}